The visibility problem for Ahlfors regular sets

Damian Dąbrowski

Visible parts

Let $E \subset \mathbb{R}^2$ be compact and $\theta \in \mathbb{S}^1$.

Let $\ell_{x,\theta}$ denote the half-line starting at x with direction θ .

Visible parts

Let $E \subset \mathbb{R}^2$ be compact and $\theta \in \mathbb{S}^1$.

Let $\ell_{x,\theta}$ denote the half-line starting at x with direction θ .

The visible part of *E* from θ is the set $Vis_{\theta}(E) \subset E$ defined as

$$\mathsf{Vis}_{\theta}(E) = \left\{ x \in E : \ell_{x,\theta} \cap E = \{x\} \right\}$$

Visible parts

Let $E \subset \mathbb{R}^2$ be compact and $\theta \in \mathbb{S}^1$.

Let $\ell_{x,\theta}$ denote the half-line starting at x with direction θ .

The visible part of *E* from θ is the set $Vis_{\theta}(E) \subset E$ defined as

$$\mathsf{Vis}_{\theta}(E) = \left\{ x \in E : \ell_{x,\theta} \cap E = \{x\} \right\}$$

How big is $Vis_{\theta}(E)$ for a typical direction θ ?

How big is $Vis_{\theta}(E)$ for a typical direction θ ?

• Trivially,

 $\dim \pi_{\theta}(E) \leq \dim \operatorname{Vis}_{\theta}(E) \leq \dim E.$

How big is $Vis_{\theta}(E)$ for a typical direction θ ?

• Trivially,

```
\dim \pi_{\theta}(E) \leq \dim \operatorname{Vis}_{\theta}(E) \leq \dim E.
```

• If dim $E \leq 1$, then for a.e. θ we have dim $\pi_{\theta}(E) = \dim E$, so

 $\dim \operatorname{Vis}_{\theta}(E) = \dim E$

How big is $Vis_{\theta}(E)$ for a typical direction θ ?

• Trivially,

```
\dim \pi_{\theta}(E) \leq \dim \operatorname{Vis}_{\theta}(E) \leq \dim E.
```

• If dim $E \leq 1$, then for a.e. θ we have dim $\pi_{\theta}(E) = \dim E$, so

 $\dim \operatorname{Vis}_{\theta}(E) = \dim E$

• If dim E > 1, then for a.e. θ we have dim $\pi_{\theta}(E) = 1$, so

 $1 \leq \dim \operatorname{Vis}_{\theta}(E) \leq \dim E$

How big is $Vis_{\theta}(E)$ for a typical direction θ ?

• Trivially,

```
\dim \pi_{\theta}(E) \leq \dim \operatorname{Vis}_{\theta}(E) \leq \dim E.
```

• If dim $E \leq 1$, then for a.e. θ we have dim $\pi_{\theta}(E) = \dim E$, so

 $\dim \operatorname{Vis}_{\theta}(E) = \dim E$

• If dim E > 1, then for a.e. θ we have dim $\pi_{\theta}(E) = 1$, so

 $1 \leq \dim \operatorname{Vis}_{\theta}(E) \leq \dim E$

Visibility conjecture

If dim E > 1, then for a.e. θ we have

Visibility conjecture

If dim E > 1, then for a.e. θ we have

Visibility conjecture

If dim E > 1, then for a.e. θ we have

Visibility conjecture

If dim E > 1, then for a.e. θ we have

Visibility conjecture

If dim E > 1, then for a.e. θ we have

Visibility conjecture

If dim E > 1, then for a.e. θ we have

Visibility conjecture

If dim E > 1, then for a.e. θ we have

The conjecture has been verified for

• quasicircles, graphs of continuous functions (Järvenpää-Järvenpää-McManus-O'Neil '03) The conjecture has been verified for

- quasicircles, graphs of continuous functions (Järvenpää-Järvenpää-McManus-O'Neil '03)
- \cdot fractal percolation

(Arhosalo-Järvenpää-Järvenpää-Rams-Shmerkin '12)

The conjecture has been verified for

- quasicircles, graphs of continuous functions (Järvenpää-Järvenpää-McManus-O'Neil '03)
- \cdot fractal percolation

(Arhosalo-Järvenpää-Järvenpää-Rams-Shmerkin '12)

 self-similar and self-affine sets satisfying additional hypotheses (JJMO '03, Falconer-Fraser '13, Rossi '21, Järvenpää-Järvenpää-Suomala-Wu '22) Progress for general sets:

• (Järvenpää-Järvenpää-Niemela '04)

$$0 < \mathcal{H}^{s}(E) < \infty \quad \Rightarrow \quad \mathcal{H}^{s}(\mathsf{Vis}_{\theta}(E)) = 0$$

Progress for general sets:

• (Järvenpää-Järvenpää-Niemela '04)

$$0 < \mathcal{H}^{s}(E) < \infty \quad \Rightarrow \quad \mathcal{H}^{s}(\mathsf{Vis}_{\theta}(E)) = 0$$

• (Orponen '22)

dim Vis_{θ}(*E*) \leq 1.99

Progress for general sets:

• (Järvenpää-Järvenpää-Niemela '04)

$$0 < \mathcal{H}^{s}(E) < \infty \quad \Rightarrow \quad \mathcal{H}^{s}(\mathsf{Vis}_{\theta}(E)) = 0$$

• (Orponen '22)

dim Vis_{θ}(*E*) \leq 1.99

Still unknown:

 $\dim \operatorname{Vis}_{\theta}(E) \stackrel{?}{<} \dim E$

A compact set *E* is *s*-Ahlfors regular if for all $x \in E$, 0 < r < diam(E)

 $\mathcal{H}^{s}(E \cap B(x, r)) \sim r^{s}.$

A compact set *E* is *s*-Ahlfors regular if for all $x \in E$, 0 < r < diam(E) $\mathcal{H}^{s}(E \cap B(x, r)) \sim r^{s}$.

Equivalently: for any 0 < r < R < diam(E) and $x \in E$

$$N(E \cap B(x, R), r) \sim \left(\frac{R}{r}\right)^s$$

A compact set *E* is s-Ahlfors regular if for all $x \in E$, 0 < r < diam(E) $\mathcal{H}^{s}(E \cap B(x, r)) \sim r^{s}$.

Equivalently: for any 0 < r < R < diam(E) and $x \in E$

$$N(E \cap B(x, R), r) \sim \left(\frac{R}{r}\right)^s$$

E.g. all self-similar sets satisfying the open set condition are Ahlfors regular.

Theorem (D. '23)

If E is compact, then

$$\dim \operatorname{Vis}_{\theta}(E) \leq 2 - \frac{1}{6}$$

Theorem (D. '23)

If E is compact, then

$$\dim \operatorname{Vis}_{\theta}(E) \leq 2 - \frac{1}{6}$$

Theorem (D. '23)

If E is s-Ahlfors regular, s > 1, then

$$\dim \operatorname{Vis}_{\theta}(E) \leq s - \alpha(s - 1),$$

where $\alpha = 0.1835...$

Orponen's approach

Orponen's approach

Fix $\theta \in \mathbb{S}^1$. We want to show

$$\mathcal{H}^{2-\tau}_{\infty}(\mathsf{Vis}_{\theta}(E))=0.$$

Orponen's approach

Fix $\theta \in \mathbb{S}^1$. We want to show

$$\mathcal{H}^{2-\tau}_{\infty}(\mathsf{Vis}_{\theta}(E))=0.$$

Fix $\delta > 0$. Let \mathcal{L} be the lines with direction θ . We divide

- good lines: $\ell \in \mathcal{L}_G$ if $\ell \cap E$ is similar to $\ell(\delta) \cap E(\delta)$
- bad lines: $\ell \in \mathcal{L}_B$ otherwise

Good part

Set $L_G := \bigcup_{\ell \in \mathcal{L}_G} \ell$ and $L_B := \bigcup_{\ell \in \mathcal{L}_B} \ell$. You can easily estimate $\mathcal{H}^{2-\tau}_{\infty}(\mathsf{Vis}_{\theta}(E) \cap L_G)$.

To estimate $Vis_{\theta}(E) \cap L_B$, one uses Fourier analysis to show that

 $\mathcal{H}_{\infty}^{1-\tau}(\pi_{\theta}(L_B))=0.$

10

To estimate $\operatorname{Vis}_{\theta}(E) \cap L_B$, one uses Fourier analysis to show that $\mathcal{H}^{1-\tau}_{\infty}(\pi_{\theta}(L_B)) = 0.$

Then,

 $\mathcal{H}^{2-\tau}_{\infty}(\mathsf{Vis}_{\theta}(E) \cap L_B) \leq \mathcal{H}^{2-\tau}_{\infty}(L_B)$

To estimate $Vis_{\theta}(E) \cap L_B$, one uses Fourier analysis to show that $\mathcal{H}^{1-\tau}_{\infty}(\pi_{\theta}(L_B)) = 0.$

Then,

$$\mathcal{H}^{2-\tau}_{\infty}(\mathsf{Vis}_{\theta}(E) \cap L_B) \leq \mathcal{H}^{2-\tau}_{\infty}(L_B) = \mathcal{H}^{1-\tau}_{\infty}(\pi_{\theta}(L_B)) = 0.$$

To estimate $Vis_{\theta}(E) \cap L_B$, one uses Fourier analysis to show that $\mathcal{H}^{1-\tau}_{\infty}(\pi_{\theta}(L_B)) = 0.$

Then,

$$\mathcal{H}^{2-\tau}_{\infty}(\mathsf{Vis}_{\theta}(E) \cap L_B) \leq \mathcal{H}^{2-\tau}_{\infty}(L_B) = \mathcal{H}^{1-\tau}_{\infty}(\pi_{\theta}(L_B)) = 0.$$

All in all,

 $\mathcal{H}^{2-\tau}_{\infty}(\mathsf{Vis}_{\theta}(E)) \leq \mathcal{H}^{2-\tau}_{\infty}(\mathsf{Vis}_{\theta}(E) \cap L_G) + \mathcal{H}^{2-\tau}_{\infty}(\mathsf{Vis}_{\theta}(E) \cap L_B) = 0,$ and so dim $\mathsf{Vis}_{\theta}(E) \leq 2 - \tau$.

Improvement for Ahlfors regular sets

Slices of fractals

Theorem (Marstrand '54)

If s > 1 and $0 < \mathcal{H}^{s}(E) < \infty$, then for a.e. θ and \mathcal{H}^{s} -a.e. $x \in E$

 $\dim(E \cap \ell_{x,\theta}) = s - 1.$

Heavy lines

We say that ℓ is a **heavy line** for *E* if

 $\dim(E \cap \ell) > \dim E - 1.$

Heavy lines

We say that ℓ is a **heavy line** for *E* if $\dim(E \cap \ell) > \dim E - 1.$ For $\theta \in \mathbb{S}^1$ we define the **heavy part** of *E* as $H_{\theta}(E) = E \cap \bigcup_{\ell \in \mathcal{H}_{\theta}} \ell,$

where \mathcal{H}_{θ} is the collection of heavy lines for *E* with direction θ .

Heavy lines

We say that ℓ is a **heavy line** for *E* if $\dim(E \cap \ell) > \dim E - 1.$ For $\theta \in \mathbb{S}^1$ we define the **heavy part** of *E* as $H_{\theta}(E) = E \cap \bigcup_{\ell \in \mathcal{H}_{\theta}} \ell,$

where \mathcal{H}_{θ} is the collection of heavy lines for *E* with direction θ .

Theorem (D. '23) If E is s-Ahlfors regular, s > 1, then for a.e. θ

 $\dim H_{\theta}(E) \leq 1.$

Compare with Marstrand: $\mathcal{H}^{s}(H_{\theta}(E)) = 0.$

Theorem (D. '23) If E is s-Ahlfors regular, s > 1, then $\dim \operatorname{Vis}_{\theta}(E) \le s - \alpha(s - 1),$

where $\alpha = 0.1835...$

Theorem (D. '23)

If E is s-Ahlfors regular, s > 1, then

$$\dim \operatorname{Vis}_{\theta}(E) \leq s - \alpha(s - 1),$$

where $\alpha = 0.1835...$

Fix $\theta \in \mathbb{S}^1$. We want to show

 $\mathcal{H}^{\mathrm{S}-\tau}_{\infty}(\mathsf{Vis}_{\theta}(E))=0$

for any $\tau < \alpha(s-1)$.

Improvement to Orponen's proof

Fix $\delta > 0$. Let \mathcal{L} be the lines with direction θ . We divide • $\ell \in \mathcal{H}$ if ℓ is heavy for E

Improvement to Orponen's proof

Fix $\delta > 0$. Let \mathcal{L} be the lines with direction θ . We divide

- $\ell \in \mathcal{H}$ if ℓ is heavy for *E*
- $\ell \in \mathcal{L}_{G}$ if $\ell \cap E$ is similar to $\ell(\delta) \cap E(\delta)$

Improvement to Orponen's proof

Fix $\delta > 0$. Let \mathcal{L} be the lines with direction θ . We divide

- $\ell \in \mathcal{H}$ if ℓ is heavy for *E*
- $\ell \in \mathcal{L}_{G}$ if $\ell \cap E$ is similar to $\ell(\delta) \cap E(\delta)$
- $\boldsymbol{\cdot} \ \ell \in \mathcal{L}_B \text{ if } \ell \notin \mathcal{H} \cup \mathcal{L}_G$

We estimate:

 \cdot the heavy part

$$\mathcal{H}^{s-\tau}_{\infty}(\mathsf{Vis}_{\theta}(E)\cap \bigcup_{\ell\in\mathcal{H}}\ell)\leq \mathcal{H}^{s-\tau}_{\infty}(H_{\theta}(E))=0,$$

We estimate:

 \cdot the heavy part

$$\mathcal{H}^{s-\tau}_{\infty}(\mathsf{Vis}_{\theta}(E) \cap \bigcup_{\ell \in \mathcal{H}} \ell) \leq \mathcal{H}^{s-\tau}_{\infty}(H_{\theta}(E)) = 0,$$

 $\cdot\,$ the good part as in Orponen's proof

 $\mathcal{H}^{s-\tau}_{\infty}(\mathsf{Vis}_{\theta}(E)\cap L_G)=0,$

We estimate:

 \cdot the heavy part

$$\mathcal{H}^{s-\tau}_{\infty}(\mathsf{Vis}_{\theta}(E) \cap \bigcup_{\ell \in \mathcal{H}} \ell) \leq \mathcal{H}^{s-\tau}_{\infty}(H_{\theta}(E)) = 0,$$

 $\cdot\,$ the good part as in Orponen's proof

$$\mathcal{H}^{s-\tau}_{\infty}(\mathsf{Vis}_{\theta}(E)\cap L_G)=0,$$

 \cdot the bad part

 $\mathcal{H}_{\infty}^{s-\tau}(\mathsf{Vis}_{\theta}(E) \cap L_B) \leq \mathcal{H}_{\infty}^{s-\tau}(E \cap L_B)$

We estimate:

 \cdot the heavy part

$$\mathcal{H}^{s-\tau}_{\infty}(\mathsf{Vis}_{\theta}(E) \cap \bigcup_{\ell \in \mathcal{H}} \ell) \leq \mathcal{H}^{s-\tau}_{\infty}(H_{\theta}(E)) = 0,$$

 $\cdot\,$ the good part as in Orponen's proof

$$\mathcal{H}^{\mathrm{S}-\tau}_{\infty}(\mathrm{Vis}_{\theta}(E)\cap L_G)=0,$$

 \cdot the bad part

$$\mathcal{H}^{s-\tau}_{\infty}(\mathsf{Vis}_{\theta}(E) \cap L_B) \leq \mathcal{H}^{s-\tau}_{\infty}(E \cap L_B) \\ \leq \mathcal{H}^{s-\tau-(s-1)}_{\infty}(\pi_{\theta}(L_B)) = \mathcal{H}^{1-\tau}_{\infty}(\pi_{\theta}(L_B))$$

We estimate:

 \cdot the heavy part

$$\mathcal{H}^{s-\tau}_{\infty}(\mathsf{Vis}_{\theta}(E) \cap \bigcup_{\ell \in \mathcal{H}} \ell) \leq \mathcal{H}^{s-\tau}_{\infty}(H_{\theta}(E)) = 0,$$

 $\cdot\,$ the good part as in Orponen's proof

$$\mathcal{H}^{\mathrm{S}-\tau}_{\infty}(\mathrm{Vis}_{\theta}(E)\cap L_G)=0,$$

 \cdot the bad part

$$\begin{aligned} \mathcal{H}^{\mathsf{s}-\tau}_{\infty}(\mathsf{Vis}_{\theta}(E)\cap L_{B}) &\leq \mathcal{H}^{\mathsf{s}-\tau}_{\infty}(E\cap L_{B}) \\ &\leq \mathcal{H}^{\mathsf{s}-\tau-(\mathsf{s}-1)}_{\infty}(\pi_{\theta}(L_{B})) = \mathcal{H}^{1-\tau}_{\infty}(\pi_{\theta}(L_{B})) = 0. \end{aligned}$$

We estimate:

 \cdot the heavy part

$$\mathcal{H}^{s-\tau}_{\infty}(\mathsf{Vis}_{\theta}(E) \cap \bigcup_{\ell \in \mathcal{H}} \ell) \leq \mathcal{H}^{s-\tau}_{\infty}(H_{\theta}(E)) = 0,$$

 $\cdot\,$ the good part as in Orponen's proof

$$\mathcal{H}^{s-\tau}_{\infty}(\mathsf{Vis}_{\theta}(E)\cap L_G)=0,$$

 \cdot the bad part

$$\begin{aligned} \mathcal{H}^{s-\tau}_{\infty}(\mathsf{Vis}_{\theta}(E)\cap L_B) &\leq \mathcal{H}^{s-\tau}_{\infty}(E\cap L_B) \\ &\leq \mathcal{H}^{s-\tau-(s-1)}_{\infty}(\pi_{\theta}(L_B)) = \mathcal{H}^{1-\tau}_{\infty}(\pi_{\theta}(L_B)) = 0. \end{aligned}$$

Hence, dim Vis_{θ}(*E*) \leq s $- \tau$.

• Improve $\alpha = 0.1835...$ in the main theorem! Either for Ahlfors regular sets, or for a smaller class of sets (e.g. nice self-similar sets).

- Improve $\alpha = 0.1835...$ in the main theorem! Either for Ahlfors regular sets, or for a smaller class of sets (e.g. nice self-similar sets).
- The estimate for dimension of heavy parts has been improved and generalized in [D.-Orponen-Wang '23]. Can this be used to get dimension drop for $Vis_{\theta}(E)$ for general sets?

Thank you!