Damian Dąbrowski
Damian Dąbrowski
Home
Preprints
Publications
Talks
Teaching
CV
Contact
Light
Dark
Automatic
Publications
Type
Journal article
Preprint
Date
2024
2023
2022
2021
2020
2019
D. Dąbrowski
(2024).
Visible parts and slices of Ahlfors regular sets
. Discrete Anal. 2024:17, 31 pp.
Cite
Article
arXiv
D. Dąbrowski
(2024).
Favard length and quantitative rectifiability
. Preprint.
Cite
arXiv
D. Dąbrowski
,
M. Goering
,
T. Orponen
(2024).
On the dimension of $s$-Nikodým sets
. Preprint.
Cite
arXiv
A. Chang
,
D. Dąbrowski
,
T. Orponen
,
M. Villa
(2024).
Structure of sets with nearly maximal Favard length
. Anal. PDE 17, no. 4, 1473–1500.
Cite
Article
arXiv
D. Dąbrowski
,
T. Orponen
,
H. Wang
(2024).
How much can heavy lines cover?
. J. Lond. Math. Soc. 109, no. 5, e12910.
Cite
Article
arXiv
D. Dąbrowski
,
X. Tolsa
(2024).
The measures with $L^2$-bounded Riesz transform and the Painlevé problem
. Preprint.
Cite
arXiv
J. Azzam
,
D. Dąbrowski
(2023).
An $\alpha$-number characterization of $L^{p}$ spaces on uniformly rectifiable sets
. Publ. Mat. 67, no. 2, 819–850.
Cite
Article
arXiv
D. Dąbrowski
,
M. Villa
(2023).
Necessary condition for the $L^2$ boundedness of the Riesz transform on Heisenberg groups
. Math. Proc. Cambridge Philos. Soc. 175, no. 2, 445-458.
Cite
Article
arXiv
D. Dąbrowski
(2022).
Quantitative Besicovitch projection theorem for irregular sets of directions
. Preprint.
Cite
arXiv
D. Dąbrowski
,
T. Orponen
,
M. Villa
(2022).
Integrability of orthogonal projections, and applications to Furstenberg sets
. Adv. Math. 407, 108567.
Cite
Article
arXiv
D. Dąbrowski
(2022).
Cones, rectifiability, and singular integral operators
. Rev. Mat. Iberoam. 38, no. 4, 1287–1334.
Cite
Article
arXiv
D. Dąbrowski
,
M. Villa
(2022).
Analytic capacity and dimension of sets with plenty of big projections
. To appear in Trans. Amer. Math. Soc.
Cite
arXiv
D. Dąbrowski
(2022).
Two examples related to conical energies
. Ann. Fenn. Math. 47, no. 1, 261–281.
Cite
Article
arXiv
D. Dąbrowski
(2021).
Sufficient condition for rectifiability involving Wasserstein distance $W_2$
. J. Geom. Anal. 31, 8539–8606.
Cite
Article
ReadCube
arXiv
D. Dąbrowski
(2020).
Necessary condition for rectifiability involving Wasserstein distance $W_2$
. Int. Math. Res. Not. IMRN 2020, no. 22, 8936–8972.
Cite
Article
arXiv
D. Dąbrowski
(2019).
Characterization of Sobolev-Slobodeckij spaces using curvature energies
. Publ. Mat. 63, no. 2, 663–677.
Cite
Article
arXiv
Cite
×