Favard length and quantitative rectifiability

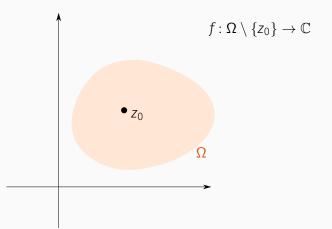
Damian Dąbrowski

Vitushkin's conjecture

Riemann's theorem on removable singularities

Theorem (Riemann)

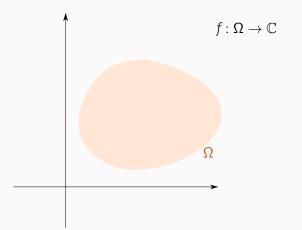
If $z_0 \in \Omega \subset \mathbb{C}$ and $f : \Omega \setminus \{z_0\} \to \mathbb{C}$ is analytic and bounded, then f can by extended analytically to all of Ω .



Riemann's theorem on removable singularities

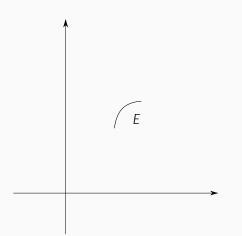
Theorem (Riemann)

If $z_0 \in \Omega \subset \mathbb{C}$ and $f : \Omega \setminus \{z_0\} \to \mathbb{C}$ is analytic and bounded, then f can by extended analytically to all of Ω .



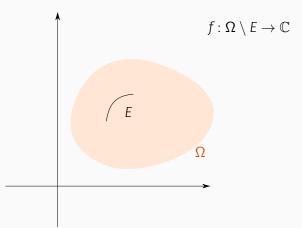
Removable sets

A compact set $E \subset \mathbb{C}$ is removable for bounded analytic functions if for any open $\Omega \subset \mathbb{C}$ containing E, each bounded analytic function $f: \Omega \setminus E \to \mathbb{C}$ has an analytic extension to Ω .



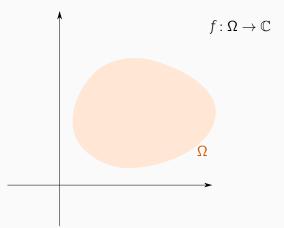
Removable sets

A compact set $E \subset \mathbb{C}$ is removable for bounded analytic functions if for any open $\Omega \subset \mathbb{C}$ containing E, each bounded analytic function $f: \Omega \setminus E \to \mathbb{C}$ has an analytic extension to Ω .



Removable sets

A compact set $E \subset \mathbb{C}$ is removable for bounded analytic functions if for any open $\Omega \subset \mathbb{C}$ containing E, each bounded analytic function $f: \Omega \setminus E \to \mathbb{C}$ has an analytic extension to Ω .



In 1947 Ahlfors characterized removability in terms of **analytic capacity**:

E is removable
$$\,\,\, \Leftrightarrow \,\,\, \gamma(E) =$$
 0,

where

$$\begin{split} \gamma(E) &= \sup\{|f'(\infty)| \ : \ f : \mathbb{C} \setminus E \to \mathbb{C} \text{ analytic, } \|f\|_{\infty} \leq 1\}, \\ f'(\infty) &= \lim_{z \to \infty} z(f(z) - f(\infty)). \end{split}$$

Painlevé problem

Find a geometric characterization of removable compact sets,

i.e. compact sets with $\gamma(E) = 0$.

Painlevé problem

Find a geometric characterization of removable compact sets, i.e. compact sets with $\gamma(E) = 0$.

Classical:

- If $\mathcal{H}^1(E) = 0$, then $\gamma(E) = 0$.
- If dim_H(E) > 1, then $\gamma(E) > 0$.

Painlevé problem

Find a geometric characterization of removable compact sets, i.e. compact sets with $\gamma(E) = 0$.

Classical:

- If $\mathcal{H}^1(E) = 0$, then $\gamma(E) = 0$.
- If dim_H(E) > 1, then $\gamma(E) > 0$.
- If *E* is a segment, then $\gamma(E) = c \mathcal{H}^1(E)$.

Painlevé problem

Find a geometric characterization of removable compact sets, i.e. compact sets with $\gamma(E) = 0$.

Classical:

- If $\mathcal{H}^1(E) = 0$, then $\gamma(E) = 0$.
- If dim_H(E) > 1, then $\gamma(E) > 0$.
- If *E* is a segment, then $\gamma(E) = c \mathcal{H}^1(E)$.

Question

 $\gamma(E) = 0 \quad \Leftrightarrow \quad \mathcal{H}^1(E) = 0?$

Painlevé problem

Find a geometric characterization of removable compact sets, i.e. compact sets with $\gamma(E) = 0$.

Classical:

- If $\mathcal{H}^1(E) = 0$, then $\gamma(E) = 0$.
- If dim_H(E) > 1, then $\gamma(E) > 0$.
- If *E* is a segment, then $\gamma(E) = c \mathcal{H}^1(E)$.

Question

 $\gamma(E) = 0 \quad \Leftrightarrow \quad \mathcal{H}^1(E) = 0? \text{ No!}$

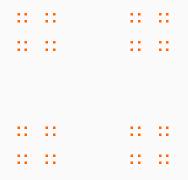
There are sets $E \subset \mathbb{C}$ with $\gamma(E) = 0$ and $0 < \mathcal{H}^1(E) < \infty$. (Vitushkin 1959, Garnett, Ivanov 1970s)

Vitushkin's conjecture

The sets constructed by Vitushkin, Garnett and Ivanov had very small projections. More precisely, they satisfied

 $\mathcal{H}^1(\pi_\theta(E))=0$

for a.e. direction $\theta \in [0, \pi]$.



Vitushkin's conjecture

The sets constructed by Vitushkin, Garnett and Ivanov had very small projections. More precisely, they satisfied

 $\mathcal{H}^1(\pi_\theta(E))=0$

for a.e. direction $\theta \in [0, \pi]$.

Define Favard length of E as

$$\mathsf{Fav}(E) = \int_0^{\pi} \mathcal{H}^1(\pi_{\theta}(E)) \ d\theta.$$

Vitushkin's conjecture

$$\gamma(E) = 0 \quad \Leftrightarrow \quad \mathsf{Fav}(E) = 0$$

Solution to Vitushkin's conjecture

Vitushkin's conjecture

$$\gamma(E) = 0 \quad \Leftrightarrow \quad \mathsf{Fav}(E) = 0$$

 In the case H¹(E) < ∞ Vitushkin's conjecture is true! (Calderón '77, David '98)

Solution to Vitushkin's conjecture

Vitushkin's conjecture

$$\gamma(E) = 0 \quad \Leftrightarrow \quad \mathsf{Fav}(E) = 0$$

- In the case H¹(E) < ∞ Vitushkin's conjecture is true! (Calderón '77, David '98)
- In the case $\mathcal{H}^1(E) = \infty$, Vitushkin's conjecture is **false** (Mattila '86, Jones-Murai '88):

$$Fav(E) = 0 \Rightarrow \gamma(E) = 0.$$

Solution to Vitushkin's conjecture

Vitushkin's conjecture

$$\gamma(E) = 0 \quad \Leftrightarrow \quad \mathsf{Fav}(E) = 0$$

- In the case H¹(E) < ∞ Vitushkin's conjecture is true! (Calderón '77, David '98)
- In the case $\mathcal{H}^1(E) = \infty$, Vitushkin's conjecture is **false** (Mattila '86, Jones-Murai '88):

$$Fav(E) = 0 \quad \Rightarrow \quad \gamma(E) = 0.$$

What about

$$Fav(E) = 0 \quad \Leftarrow \quad \gamma(E) = 0?$$

Problem 1 (qualitative)

Fav(E) > 0 $\Rightarrow \gamma(E) > 0$? Open for sets $E \subset \mathbb{C}$ with dim_H(E) = 1 and non- σ -finite \mathcal{H}^1 -measure.

Problem 1 (qualitative)

```
Fav(E) > 0 \Rightarrow \gamma(E) > 0?
Open for sets E \subset \mathbb{C} with \dim_H(E) = 1 and non-\sigma-finite
```

 \mathcal{H}^{1} -measure.

Problem 2 (quantitative)

 $\gamma(E) \gtrsim Fav(E)?$ $\gamma(E) \gtrsim_{Fav(E)} 1?$

Open even for sets with finite length.

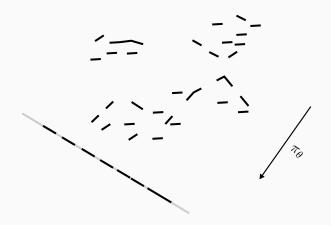
What happens for sets with finite length?

Theorem (Besicovitch 1939)

Let
$$E \subset \mathbb{R}^2$$
 with $0 < \mathcal{H}^1(E) < \infty$. If $Fav(E) > 0$,

Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. If Fav(E) > 0,



Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. If Fav(E) > 0, then there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\mathcal{H}^1(E \cap \Gamma) > 0$.

Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. If Fav(E) > 0, then there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\mathcal{H}^1(E \cap \Gamma) > 0$.

Theorem (Calderón 1977)

If Γ is a rectifiable curve and $F \subset \Gamma$ satisfies $\mathcal{H}^1(F) > 0$, then

 $\gamma(F) > 0.$

This is a corollary of Calderón's proof of the *L*²-boundedness of Cauchy transform on Lipschitz graphs with small constant.

Vitushkin's conjecture when $\mathcal{H}^1(E) < \infty$

Goal

$$Fav(E) > 0 \Rightarrow \gamma(E) > 0$$

If $0 < \mathcal{H}^1(E) < \infty$ and Fav(E) > 0, then by the Besicovitch projection theorem $\exists \Gamma$ with $\mathcal{H}^1(E \cap \Gamma) > 0$

$$\gamma(E) \geq \gamma(E \cap \Gamma)$$

Vitushkin's conjecture when $\mathcal{H}^1(E) < \infty$

Goal

$$Fav(E) > 0 \Rightarrow \gamma(E) > 0$$

If $0 < \mathcal{H}^1(E) < \infty$ and Fav(E) > 0, then by the Besicovitch projection theorem $\exists \Gamma$ with $\mathcal{H}^1(E \cap \Gamma) > 0$

$$\gamma(E) \geq \gamma(E \cap \Gamma) \overset{(Calderón)}{>} 0.$$

Vitushkin's conjecture when $\mathcal{H}^1(E) < \infty$

Goal

$$Fav(E) > 0 \Rightarrow \gamma(E) > 0$$

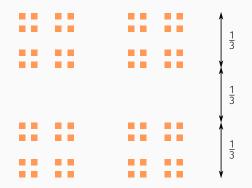
If $0 < \mathcal{H}^1(E) < \infty$ and Fav(E) > 0, then by the Besicovitch projection theorem $\exists \Gamma$ with $\mathcal{H}^1(E \cap \Gamma) > 0$

$$\gamma(E) \geq \gamma(E \cap \Gamma) \overset{(Calderón)}{>} 0.$$

- Why does it only work for sets with finite length?
- Why does it give no quantitative estimates?

First problem

The Besicovitch projection theorem **fails** for sets with infinite length!



 $K = C_{1/3} \times C_{1/3}$ satisfies $Fav(K) \gtrsim 1$ and $\mathcal{H}^1(K \cap \Gamma) = 0$ for every rectifiable curve.

Recall: if $0 < \mathcal{H}^1(E) < \infty$ and Fav(E) > 0, then $\exists \Gamma$ with $\mathcal{H}^1(E \cap \Gamma) > 0$ and

 $\gamma(E) \geq \gamma(E \cap \Gamma) \stackrel{(Calderón)}{>} 0.$

Recall: if $0 < \mathcal{H}^1(E) < \infty$ and Fav(E) > 0, then $\exists \Gamma$ with $\mathcal{H}^1(E \cap \Gamma) > 0$ and

$$\gamma(E) \geq \gamma(E \cap \Gamma) > 0.$$

There are estimates on $\gamma(E \cap \Gamma)$ depending on $\mathcal{H}^1(E \cap \Gamma)$, e.g. if Γ is an *L*-Lipschitz graph, then

 $\gamma(E \cap \Gamma) \gtrsim_L \mathcal{H}^1(E \cap \Gamma)...$

Recall: if $0 < \mathcal{H}^1(E) < \infty$ and Fav(E) > 0, then $\exists \Gamma$ with $\mathcal{H}^1(E \cap \Gamma) > 0$ and

$$\gamma(E) \geq \gamma(E \cap \Gamma) > 0.$$

There are estimates on $\gamma(E \cap \Gamma)$ depending on $\mathcal{H}^1(E \cap \Gamma)$, e.g. if Γ is an *L*-Lipschitz graph, then

 $\gamma(E \cap \Gamma) \gtrsim_L \mathcal{H}^1(E \cap \Gamma)...$

...but the Besicovitch projection theorem gives **no quantitative bound** neither on $\mathcal{H}^1(E \cap \Gamma)$, nor on Lip(Γ)!

Recall: if $0 < \mathcal{H}^1(E) < \infty$ and Fav(E) > 0, then $\exists \Gamma$ with $\mathcal{H}^1(E \cap \Gamma) > 0$ and

$$\gamma(E) \geq \gamma(E \cap \Gamma) > 0.$$

There are estimates on $\gamma(E \cap \Gamma)$ depending on $\mathcal{H}^1(E \cap \Gamma)$, e.g. if Γ is an *L*-Lipschitz graph, then

$$\gamma(E \cap \mathsf{\Gamma}) \gtrsim_L \mathcal{H}^1(E \cap \mathsf{\Gamma})...$$

...but the Besicovitch projection theorem gives **no quantitative bound** neither on $\mathcal{H}^1(E \cap \Gamma)$, nor on Lip(Γ)!

Favard length problem

Can we quantify the dependence of $Lip(\Gamma)$ and $\mathcal{H}^1(E \cap \Gamma)$ on Fav(E)?

Favard length problem

Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. If Fav(E) > 0, then there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with

 $\mathcal{H}^1(E\cap \Gamma)>0.$

Naive conjecture

Let $E \subset [0,1]^2$ with $\mathcal{H}^1(E) \sim 1$ and $Fav(E) \gtrsim 1$. Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $Lip(\Gamma) \lesssim 1$ and

 $\mathcal{H}^1(E \cap \Gamma) \gtrsim 1.$

... is false

For any $\varepsilon > 0$ there exists a set $E = E_{\varepsilon} \subset [0, 1]^2$ with $\mathcal{H}^1(E) \sim 1$ and $Fav(E) \gtrsim 1$ such that for all *L*-Lipschitz graphs Γ

$\mathcal{H}^1(E\cap\Gamma)\lesssim L\varepsilon.$

o	o	o	o	o	0	0	0	٥	ϵ^2
0	0	0	0	0	٥	0	0	0	ϵ
o	o	o	o	o	o	o	o	o	¥ °
0	0	0	o	o	o	o	o	o	
o	0	o	0	o	0	0	0	0	
o	0	o	0	o	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	

E consists of ε^{-2} uniformly distributed circles of radius ε^2 .

Reasonable conjecture

We say that $E \subset \mathbb{R}^2$ is Ahlfors regular if for every $x \in E$ and 0 < r < diam(E)

 $C^{-1}r \leq \mathcal{H}^1(E \cap B(x,r)) \leq Cr.$

Reasonable conjecture

We say that $E \subset \mathbb{R}^2$ is Ahlfors regular if for every $x \in E$ and 0 < r < diam(E)

```
C^{-1}r \leq \mathcal{H}^1(E \cap B(x,r)) \leq Cr.
```

Reasonable conjecture

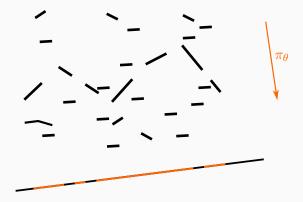
Let $E \subset \mathbb{R}^2$ be an Ahlfors regular set with $Fav(E) \gtrsim \mathcal{H}^1(E)$.

Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\mathsf{Lip}(\Gamma) \lesssim 1$ and

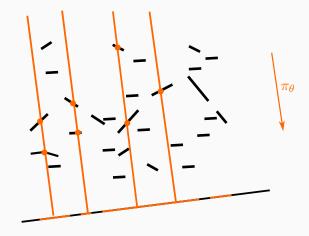
$$\mathcal{H}^1(E\cap\Gamma)\gtrsim \mathcal{H}^1(E).$$

Variations on this conjecture appearing since the 90s in the works of David and Semmes, Mattila, Peres and Solomyak.

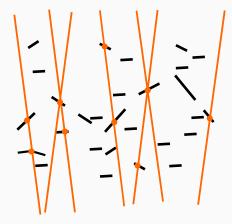
big projections



big projections \Rightarrow many lines with few intersections

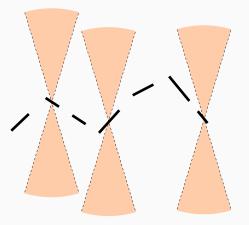


big projections \Rightarrow many lines with few intersections



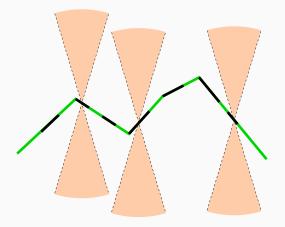
big projections \Rightarrow many lines with few intersections

 $\Rightarrow\,$ cones with no intersections



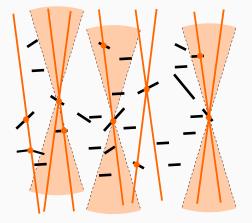
big projections \Rightarrow many lines with few intersections

 $\Rightarrow~{\rm cones}~{\rm with}~{\rm no}~{\rm intersections}~\Rightarrow~{\rm subset}~{\rm of}~{\rm a}~{\rm Lipschitz}~{\rm graph}$



big projections \Rightarrow many lines with few intersections

 \Rightarrow cones with no intersections \Rightarrow subset of a Lipschitz graph



Previous work

Reasonable conjecture

Let $E \subset \mathbb{R}^2$ be an Ahlfors regular set with $Fav(E) \gtrsim \mathcal{H}^1(E)$.

Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\mathsf{Lip}(\Gamma) \lesssim 1$ and

$$\mathcal{H}^1(E\cap\Gamma)\gtrsim \mathcal{H}^1(E).$$

Progress on the conjecture consisted of replacing "Fav(E) $\gtrsim \mathcal{H}^1(E)$ " by:

- David-Semmes '93: big projection + WGL
- Martikainen-Orponen '18: projections in L²
- Orponen '21: plenty of big projections
- **D. '22**: projections in L^{∞}

Theorem (D. '24)

Let $E \subset \mathbb{R}^2$ be an Ahlfors regular set with $Fav(E) \gtrsim \mathcal{H}^1(E)$.

Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\mathsf{Lip}(\Gamma) \lesssim 1$ and

 $\mathcal{H}^1(E\cap\Gamma)\gtrsim \mathcal{H}^1(E).$

Theorem (D. '24)

Let $E \subset \mathbb{R}^2$ be an Ahlfors regular set with $Fav(E) \gtrsim \mathcal{H}^1(E)$.

Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\mathsf{Lip}(\Gamma) \lesssim 1$ and

$$\mathcal{H}^1(E\cap\Gamma)\gtrsim \mathcal{H}^1(E).$$

Corollaries:

- a positive answer to a 1993 question of David and Semmes,
- a positive answer to a 2002 question of Peres and Solomyak,
- progress on Vitushkin's conjecture.

Back to Vitushkin

Quantitative Vitushkin's conjecture If $E \subset \mathbb{R}^2$ is compact and $Fav(E) \ge \kappa \operatorname{diam}(E)$, do we have $\gamma(E) \gtrsim_{\kappa} \operatorname{diam}(E)$?

Partial results in Chang-Tolsa '20 and D.-Villa '22.

Quantitative Vitushkin's conjecture If $E \subset \mathbb{R}^2$ is compact and $Fav(E) \ge \kappa \operatorname{diam}(E)$, do we have $\gamma(E) \gtrsim_{\kappa} \operatorname{diam}(E)$?

Partial results in Chang-Tolsa '20 and D.-Villa '22.

Corollary (D. '24)

If $E \subset \mathbb{R}^2$ is Ahlfors regular and $Fav(E) \ge \kappa \operatorname{diam}(E)$, then

 $\gamma(E) \gtrsim_{\kappa} \operatorname{diam}(E).$

We say that a set $E \subset \mathbb{R}^2$ has uniformly large Favard length if it is compact and for all $x \in E$ and 0 < r < diam(E)

 $Fav(E \cap B(x, r)) \geq \kappa r.$

Sets with ULFL

We say that a set $E \subset \mathbb{R}^2$ has uniformly large Favard length if it is compact and for all $x \in E$ and 0 < r < diam(E)

 $Fav(E \cap B(x, r)) \geq \kappa r.$

 $\downarrow \varepsilon^{2}$

A set violating ULFL

We say that a set $E \subset \mathbb{R}^2$ has uniformly large Favard length if it is compact and for all $x \in E$ and 0 < r < diam(E)

 $Fav(E \cap B(x, r)) \geq \kappa r.$

 $\downarrow \varepsilon^{2}$

A set violating ULFL

We say that a set $E \subset \mathbb{R}^2$ has uniformly large Favard length if it is compact and for all $x \in E$ and 0 < r < diam(E)

 $Fav(E \cap B(x, r)) \geq \kappa r.$

Corollary (D. '24 + D.-Villa '22) If $E \subset \mathbb{R}^2$ has ULFL, then

 $\gamma(E) \gtrsim_{\kappa} \operatorname{diam}(E).$

Proof of the main result

Theorem (D. '24)

Let $E \subset B(0, 1)$ be an Ahlfors regular set with $Fav(E) \gtrsim \mathcal{H}^1(E)$. Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $Lip(\Gamma) \lesssim 1$ and

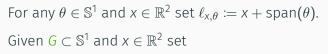
 $\mathcal{H}^1(E \cap \Gamma) \gtrsim \mathcal{H}^1(E).$

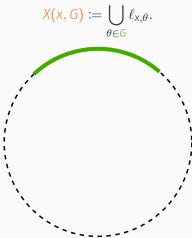
Theorem (D. '24)

Let $E \subset B(0, 1)$ be an Ahlfors regular set with $Fav(E) \gtrsim \mathcal{H}^1(E)$. Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $Lip(\Gamma) \lesssim 1$ and

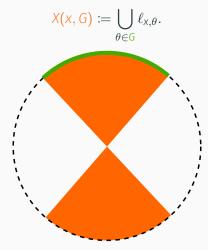
$$\mathcal{H}^1(E\cap\Gamma)\gtrsim \mathcal{H}^1(E).$$

Key tool: **conical energies** introduced in **[Martikainen-Orponen** '**18]** and **[Chang-Tolsa '20]**.

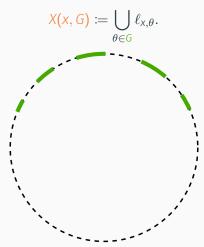




For any $\theta \in \mathbb{S}^1$ and $x \in \mathbb{R}^2$ set $\ell_{x,\theta} := x + \operatorname{span}(\theta)$. Given $G \subset \mathbb{S}^1$ and $x \in \mathbb{R}^2$ set



For any $\theta \in \mathbb{S}^1$ and $x \in \mathbb{R}^2$ set $\ell_{x,\theta} := x + \operatorname{span}(\theta)$. Given $G \subset \mathbb{S}^1$ and $x \in \mathbb{R}^2$ set



For any $\theta \in \mathbb{S}^1$ and $x \in \mathbb{R}^2$ set $\ell_{x,\theta} := x + \operatorname{span}(\theta)$. Given $G \subset \mathbb{S}^1$ and $x \in \mathbb{R}^2$ set

For any $\theta \in \mathbb{S}^1$ and $x \in \mathbb{R}^2$ set $\ell_{x,\theta} := x + \operatorname{span}(\theta)$. Given $G \subset \mathbb{S}^1$ and $x \in \mathbb{R}^2$ set

$$X(x,G) \coloneqq \bigcup_{\theta \in G} \ell_{x,\theta}.$$

Given 0 < r < R we define the truncated cones

 $X(x,G,r) := X(x,G) \cap B(x,r)$

and

$$X(x,G,r,R) := X(x,G,R) \setminus B(x,r).$$

Conical energies

Given $x \in \mathbb{R}^2$, $G \subset \mathbb{S}^1$, and a measure μ we define the **conical** energy of μ at x as

$$\mathcal{E}_{\mu}(x,G) = \int_0^\infty \frac{\mu(X(x,G,r))}{r} \frac{dr}{r}$$

Conical energies

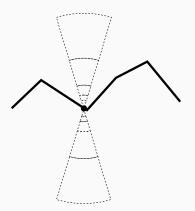
Given $x \in \mathbb{R}^2$, $G \subset \mathbb{S}^1$, and a measure μ we define the **conical** energy of μ at x as

$$\mathcal{E}_{\mu}(x,G) = \int_{0}^{\infty} \frac{\mu(X(x,G,r))}{r} \frac{dr}{r} \sim \sum_{k \in \mathbb{Z}} \frac{\mu(X(x,G,2^{-k},2^{-k+1}))}{2^{-k}}.$$

E

Finding Lipschitz graphs

Note: if $\mathcal{E}_{\mu}(x, J) = 0$ for μ -a.e. x with a fixed arc $J \subset \mathbb{S}^{1}$, then $\mu(X(x, J)) = 0$ for μ -a.e. x, and so μ is concentrated on a Lipschitz graph.



Finding Lipschitz graphs

Note: if $\mathcal{E}_{\mu}(x,J) = 0$ for μ -a.e. x with a fixed arc $J \subset \mathbb{S}^{1}$, then $\mu(X(x,J)) = 0$ for μ -a.e. x,

and so μ is concentrated on a Lipschitz graph.

Theorem (Martikainen-Orponen '18)

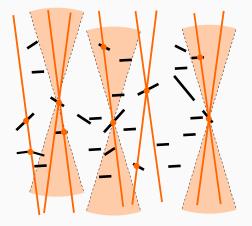
Assume that $E \subset B(0, 1)$ is Ahlfors regular, $F \subset E$ with $\mathcal{H}^1(F) \sim \mathcal{H}^1(E)$, and there exists an arc $J \subset S^1$ with $\mathcal{H}^1(J) \gtrsim 1$ such that for $\mu = \mathcal{H}^1|_F$

$$\mathcal{E}_{\mu}(x,J) \lesssim 1.$$

Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with Lip $(\Gamma) \lesssim 1$ and $\mathcal{H}^1(F \cap \Gamma) \gtrsim 1$.

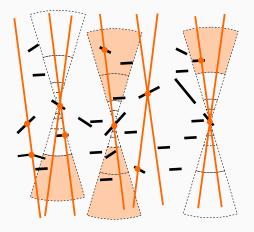
From big projections to conical energies

big projections \Rightarrow many lines with few intersections \Rightarrow cones with no intersections \Rightarrow subset of a Lipschitz graph



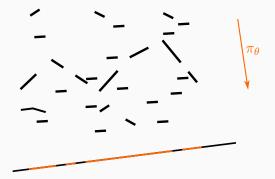
From big projections to conical energies

big projections \Rightarrow many lines with few intersections \Rightarrow bounded conical energies $\stackrel{[MO18]}{\Rightarrow}$ subset of a Lipschitz graph



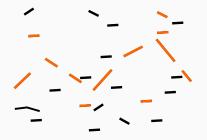
Lemma

Let $E \subset B(0,1)$ be an Ahlfors regular set with $Fav(E) \gtrsim \mathcal{H}^1(E)$.



Lemma

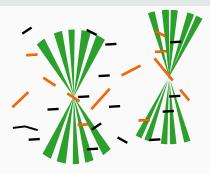
Let $E \subset B(0, 1)$ be an Ahlfors regular set with $Fav(E) \gtrsim \mathcal{H}^1(E)$. Then, there exists $F \subset E$ with $\mathcal{H}^1(F) \sim \mathcal{H}^1(E)$



Lemma

Let $E \subset B(0, 1)$ be an Ahlfors regular set with $Fav(E) \gtrsim \mathcal{H}^1(E)$. Then, there exists $F \subset E$ with $\mathcal{H}^1(F) \sim \mathcal{H}^1(E)$ such that for every $x \in F$ there is $G(x) \subset S^1$ with $\mathcal{H}^1(G(x)) \gtrsim 1$ and

 $\mathcal{E}_{\mu}(x,G(x)) \lesssim 1.$



Lemma

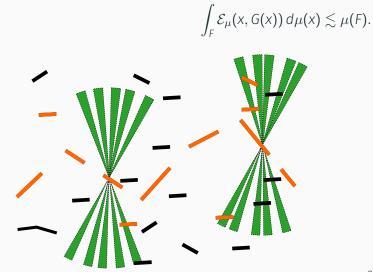
Let $E \subset B(0, 1)$ be an Ahlfors regular set with $Fav(E) \gtrsim \mathcal{H}^1(E)$. Then, there exists $F \subset E$ with $\mathcal{H}^1(F) \sim \mathcal{H}^1(E)$ such that for every $x \in F$ there is $G(x) \subset S^1$ with $\mathcal{H}^1(G(x)) \gtrsim 1$ and $\mathcal{E}_{\mu}(x, G(x)) \lesssim 1$.

This is close to [MO18], but there are two problems:

- $G(x) \subset \mathbb{S}^1$ might not be an arc,
- G(x) depends on the point x.

[MO18] requires that G(x) = J for some fixed arc $J \subset S^1$.

Good directions propagate



Good directions propagate

 $\int_{\mathbb{F}} \mathcal{E}_{\mu}(x, G_{*}(x)) d\mu(x) \lesssim \int_{\mathbb{F}} \mathcal{E}_{\mu}(x, G(x)) d\mu(x) \lesssim \mu(F).$

Good directions propagate

 $\int_{\mathsf{F}} \mathcal{E}_{\mu}(x,J) \, d\mu(x) \lesssim \int_{\mathsf{F}} \mathcal{E}_{\mu}(x,G_{*}(x)) \, d\mu(x) \lesssim \int_{\mathsf{F}} \mathcal{E}_{\mu}(x,G(x)) \, d\mu(x) \lesssim \mu(F).$

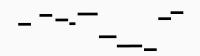
$$\int_{F} \mathcal{E}_{\mu}(x,J) \, d\mu(x) \lesssim \int_{F} \mathcal{E}_{\mu}(x,G_{*}(x)) \, d\mu(x) \lesssim \int_{F} \mathcal{E}_{\mu}(x,G(x)) \, d\mu(x) \lesssim \mu(F)$$

Proof of the main result:

Lemma + Propagation + [MO18] = big piece of a Lipschitz graph.

Proposition

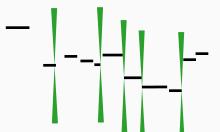
Let $E \subset B(0, 1)$ be an Ahlfors regular set consisting of parallel segments.



Proposition

Let $E \subset B(0,1)$ be an Ahlfors regular set consisting of parallel segments. Assume that there is an arc $J \subset S^1$ "parallel" to the segments such that

 $E \cap X(x,J) = \{x\}$ for $x \in E$.



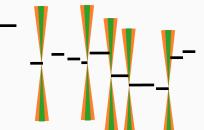
Proposition

Let $E \subset B(0,1)$ be an Ahlfors regular set consisting of parallel segments. Assume that there is an arc $J \subset S^1$ "parallel" to the segments such that

$$E \cap X(x,J) = \{x\}$$
 for $x \in E$.

Then,

$$\int \mathcal{E}_{\mu}(\mathsf{x},\mathsf{3J}) \, d\mu(\mathsf{x}) \lesssim \mathcal{H}^{1}(\mathsf{J})\mu(\mathsf{E}).$$



Proposition

Let $E \subset B(0,1)$ be an Ahlfors regular set consisting of parallel segments. Assume that there is an arc $J \subset S^1$ "parallel" to the segments such that

$$E \cap X(x,J) = \{x\}$$
 for $x \in E$.

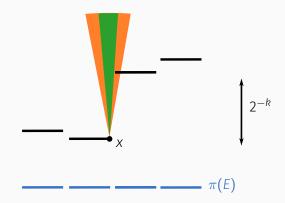
Then,

$$\int \mathcal{E}_{\mu}(x, \frac{3J}{J}) d\mu(x) \lesssim \mathcal{H}^{1}(J)\mu(E).$$

$$\mathcal{E}_{\mu}(x, \mathbf{3J}) = \mathcal{E}_{\mu}(x, \mathbf{3J} \setminus J) \sim \sum_{k \in \mathbb{Z}} \frac{\mu(X(x, \mathbf{3J} \setminus J, 2^{-R}, 2^{-R+1}))}{2^{-k}}$$
$$= \sum_{k \in \text{Bad}(x)} \frac{\mu(X(x, \mathbf{3J} \setminus J, 2^{-k}, 2^{-k+1}))}{2^{-k}} \sim \mathcal{H}^{1}(J) \cdot \#\text{Bad}(x).$$

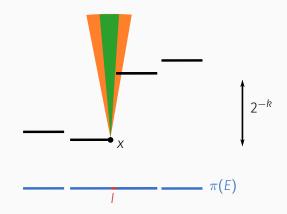
If $k \in Bad(x)$, then there exists a "gap" I in $\pi(E)$ such that

$$\mathcal{H}^1(I)\sim \mathcal{H}^1(J)\cdot 2^{-k}$$
 and $\pi(x)\in 5I.$



If $k \in Bad(x)$, then there exists a "gap" I in $\pi(E)$ such that

$$\mathcal{H}^1(I)\sim \mathcal{H}^1(J)\cdot 2^{-k}$$
 and $\pi(x)\in 5I.$



If $k \in Bad(x)$, then there exists a "gap" I in $\pi(E)$ such that

$$\mathcal{H}^1(I) \sim \mathcal{H}^1(J) \cdot 2^{-k}$$
 and $\pi(x) \in 5I$.

$$\int_{E} \mathcal{E}_{\mu}(x, 3J) d\mu(x) \sim \mathcal{H}^{1}(J) \int_{E} \# \text{Bad}(x) d\mu(x)$$

If $k \in Bad(x)$, then there exists a "gap" I in $\pi(E)$ such that

$$\mathcal{H}^1(I) \sim \mathcal{H}^1(J) \cdot 2^{-k}$$
 and $\pi(x) \in 5I$.

$$\int_{E} \mathcal{E}_{\mu}(x, 3J) d\mu(x) \sim \mathcal{H}^{1}(J) \int_{E} \# \operatorname{Bad}(x) d\mu(x)$$
$$= \mathcal{H}^{1}(J) \sum_{k \geq 0} \mu(\{x \in E : k \in \operatorname{Bad}(x)\})$$

If $k \in Bad(x)$, then there exists a "gap" I in $\pi(E)$ such that

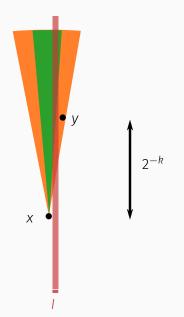
$$\mathcal{H}^1(I) \sim \mathcal{H}^1(J) \cdot 2^{-k}$$
 and $\pi(x) \in 5I$.

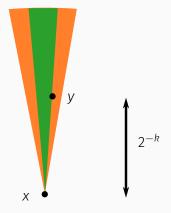
$$\int_{E} \mathcal{E}_{\mu}(x, 3J) d\mu(x) \sim \mathcal{H}^{1}(J) \int_{E} \# \operatorname{Bad}(x) d\mu(x)$$
$$= \mathcal{H}^{1}(J) \sum_{k \ge 0} \mu(\{x \in E : k \in \operatorname{Bad}(x)\})$$
$$\overset{\text{KGL}}{\lesssim} \mathcal{H}^{1}(J) \sum_{k \ge 0} \sum_{\substack{l \in \operatorname{Gap}, \\ \mathcal{H}^{1}(l) \sim \mathcal{H}^{1}(J) 2^{-k}}} \mu(\pi^{-1}(5I))$$

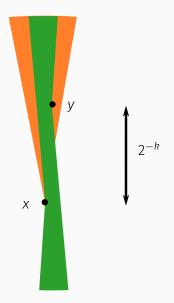
If $k \in Bad(x)$, then there exists a "gap" I in $\pi(E)$ such that

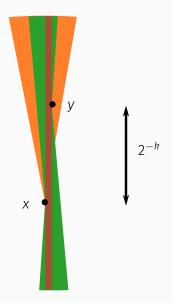
$$\mathcal{H}^1(I)\sim \mathcal{H}^1(J)\cdot 2^{-k}$$
 and $\pi(x)\in 5I.$

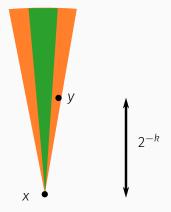
$$\begin{split} \int_{E} \mathcal{E}_{\mu}(x, 3J) \, d\mu(x) &\sim \mathcal{H}^{1}(J) \int_{E} \# \operatorname{Bad}(x) \, d\mu(x) \\ &= \mathcal{H}^{1}(J) \sum_{k \geq 0} \mu(\{x \in E : k \in \operatorname{Bad}(x)\}) \\ &\stackrel{\text{KGL}}{\lesssim} \mathcal{H}^{1}(J) \sum_{k \geq 0} \sum_{\substack{l \in \operatorname{Gap}, \\ \mathcal{H}^{1}(l) \sim \mathcal{H}^{1}(J) 2^{-k}}} \mu(\pi^{-1}(5I)) \\ &\sim \mathcal{H}^{1}(J) \sum_{k \geq 0} \sum_{\substack{l \in \operatorname{Gap}, \\ \mathcal{H}^{1}(I) \sim \mathcal{H}^{1}(J) 2^{-k}}} \mathcal{H}^{1}(I) \lesssim \mathcal{H}^{1}(J) \operatorname{diam}(E). \end{split}$$

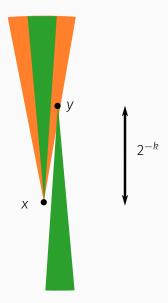


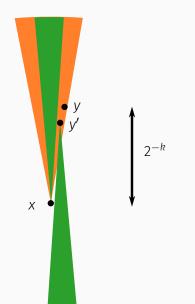


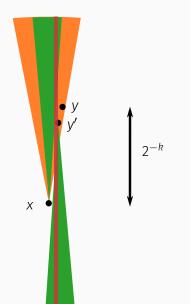












Qualitative ULFL

Suppose that *E* is compact, and for every $x \in E$ we have

$$\liminf_{r\to 0} \frac{\mathsf{Fav}(E\cap B(x,r))}{r} > 0.$$

Does this imply $\gamma(E) > 0$?

Qualitative ULFL

Suppose that *E* is compact, and for every $x \in E$ we have

$$\liminf_{r\to 0} \frac{\mathsf{Fav}(E\cap B(x,r))}{r} > 0.$$

Does this imply $\gamma(E) > 0$?

Thank you!