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Vitushkin’s conjecture



Riemann’s theorem on removable singularities

Theorem (Riemann)
If z0 ∈ Ω ⊂ C and f : Ω \ {z0} → C is analytic and bounded,
then f can by extended analytically to all of Ω.

f : Ω \ {z0} → C

f : Ω → C

Ω

z0
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Removable sets

A compact set E ⊂ C is removable for bounded analytic
functions if for any open Ω ⊂ C containing E, each bounded
analytic function f : Ω \ E → C has an analytic extension to Ω.

E
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Analytic capacity

In 1947 Ahlfors characterized removability in terms of analytic
capacity:

E is removable ⇔ γ(E) = 0,

where

γ(E) = sup{|f ′(∞)| : f : C \ E → C analytic, ∥f∥∞ ≤ 1},
f ′(∞) = lim

z→∞
z(f(z)− f(∞)).
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Painlevé problem

Painlevé problem
Find a geometric characterization of removable compact sets,
i.e. compact sets with γ(E) = 0.

Classical:

• If H1(E) = 0, then γ(E) = 0.
• If dimH(E) > 1, then γ(E) > 0.
• If E is a segment, then γ(E) = cH1(E).

Question
γ(E) = 0 ⇔ H1(E) = 0? No!

There are sets E ⊂ C with γ(E) = 0 and 0 < H1(E) < ∞.
(Vitushkin 1959, Garnett, Ivanov 1970s)
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Vitushkin’s conjecture

The sets constructed by Vitushkin, Garnett and Ivanov had very
small projections. More precisely, they satisfied

H1(πθ(E)) = 0

for a.e. direction θ ∈ [0, π].

K3
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Vitushkin’s conjecture

The sets constructed by Vitushkin, Garnett and Ivanov had very
small projections. More precisely, they satisfied

H1(πθ(E)) = 0

for a.e. direction θ ∈ [0, π].

Define Favard length of E as

Fav(E) =
∫ π

0
H1(πθ(E)) dθ.

Vitushkin’s conjecture

γ(E) = 0 ⇔ Fav(E) = 0
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Solution to Vitushkin’s conjecture

Vitushkin’s conjecture

γ(E) = 0 ⇔ Fav(E) = 0

• In the case H1(E) < ∞ Vitushkin’s conjecture is true!
(Calderón ’77, David ’98)

• In the case H1(E) = ∞, Vitushkin’s conjecture is false
(Mattila ’86, Jones-Murai ’88):

Fav(E) = 0 ̸⇒ γ(E) = 0.

• What about

Fav(E) = 0 ⇐ γ(E) = 0?
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Open problems

Problem 1 (qualitative)

Fav(E) > 0 ⇒ γ(E) > 0?

Open for sets E ⊂ C with dimH(E) = 1 and non-σ-finite
H1-measure.

Problem 2 (quantitative)

γ(E) ≳ Fav(E)?
γ(E) ≳Fav(E) 1?

Open even for sets with finite length.
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What happens for sets with finite
length?



Two ingredients

Theorem (Besicovitch 1939)
Let E ⊂ R2 with 0 < H1(E) < ∞. If Fav(E) > 0,

then there
exists a Lipschitz graph Γ ⊂ R2 with H1(E ∩ Γ) > 0.

πθ
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Two ingredients

Theorem (Besicovitch 1939)
Let E ⊂ R2 with 0 < H1(E) < ∞. If Fav(E) > 0, then there
exists a Lipschitz graph Γ ⊂ R2 with H1(E ∩ Γ) > 0.

Theorem (Calderón 1977)
If Γ is a rectifiable curve and F ⊂ Γ satisfies H1(F) > 0, then

γ(F) > 0.

This is a corollary of Calderón’s proof of the L2-boundedness of
Cauchy transform on Lipschitz graphs with small constant.
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Vitushkin’s conjecture when H1(E) < ∞

Goal

Fav(E) > 0 ⇒ γ(E) > 0

If 0 < H1(E) < ∞ and Fav(E) > 0, then by the Besicovitch
projection theorem ∃ Γ with H1(E ∩ Γ) > 0

γ(E) ≥ γ(E ∩ Γ)

(Calderón)
> 0.

■

• Why does it only work for sets with finite length?
• Why does it give no quantitative estimates?
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First problem

The Besicovitch projection theorem fails for sets with infinite
length!

1
3

1
3

1
3

K = C1/3 × C1/3 satisfies Fav(K) ≳ 1 and H1(K ∩ Γ) = 0 for every
rectifiable curve.
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Second problem

Recall: if 0 < H1(E) < ∞ and Fav(E) > 0, then ∃ Γ with
H1(E ∩ Γ) > 0 and

γ(E) ≥ γ(E ∩ Γ)
(Calderón)

> 0.

There are estimates on γ(E ∩ Γ) depending on H1(E ∩ Γ), e.g. if
Γ is an L-Lipschitz graph, then

γ(E ∩ Γ) ≳L H1(E ∩ Γ)...

...but the Besicovitch projection theorem gives no quantitative
bound neither on H1(E ∩ Γ), nor on Lip(Γ)!

Favard length problem
Can we quantify the dependence of Lip(Γ) and H1(E ∩ Γ) on
Fav(E)?
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Favard length problem



Naive conjecture...

Theorem (Besicovitch 1939)
Let E ⊂ R2 with 0 < H1(E) < ∞. If Fav(E) > 0, then there
exists a Lipschitz graph Γ ⊂ R2 with

H1(E ∩ Γ) > 0.

Naive conjecture
Let E ⊂ [0, 1]2 with H1(E) ∼ 1 and Fav(E) ≳ 1. Then, there
exists a Lipschitz graph Γ ⊂ R2 with Lip(Γ) ≲ 1 and

H1(E ∩ Γ) ≳ 1.
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... is false

For any ε > 0 there exists a set E = Eε ⊂ [0, 1]2 with H1(E) ∼ 1
and Fav(E) ≳ 1 such that for all L-Lipschitz graphs Γ

H1(E ∩ Γ) ≲ Lε.

ε2

ε

E consists of ε−2 uniformly distributed circles of radius ε2.
13



Reasonable conjecture

We say that E ⊂ R2 is Ahlfors regular if for every x ∈ E and
0 < r < diam(E)

C−1r ≤ H1(E ∩ B(x, r)) ≤ Cr.
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Reasonable conjecture

We say that E ⊂ R2 is Ahlfors regular if for every x ∈ E and
0 < r < diam(E)

C−1r ≤ H1(E ∩ B(x, r)) ≤ Cr.

Reasonable conjecture
Let E ⊂ R2 be an Ahlfors regular set with Fav(E) ≳ H1(E).

Then, there exists a Lipschitz graph Γ ⊂ R2 with Lip(Γ) ≲ 1
and

H1(E ∩ Γ) ≳ H1(E).

Variations on this conjecture appearing since the 90s in the
works of David and Semmes, Mattila, Peres and Solomyak.
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What is this really about?

big projections

⇒ many lines with few intersections

⇒ cones with no intersections ⇒ subset of a Lipschitz graph

πθ
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Previous work

Reasonable conjecture
Let E ⊂ R2 be an Ahlfors regular set with Fav(E) ≳ H1(E).

Then, there exists a Lipschitz graph Γ ⊂ R2 with Lip(Γ) ≲ 1
and

H1(E ∩ Γ) ≳ H1(E).

Progress on the conjecture consisted of replacing
“Fav(E) ≳ H1(E)” by:

• David-Semmes ’93: big projection + WGL
• Martikainen-Orponen ’18: projections in L2

• Orponen ’21: plenty of big projections
• D. ’22: projections in L∞
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New result: the conjecture is true!

Theorem (D. ’24)
Let E ⊂ R2 be an Ahlfors regular set with Fav(E) ≳ H1(E).

Then, there exists a Lipschitz graph Γ ⊂ R2 with Lip(Γ) ≲ 1
and

H1(E ∩ Γ) ≳ H1(E).

Corollaries:

• a positive answer to a 1993 question of David and Semmes,
• a positive answer to a 2002 question of Peres and
Solomyak,

• progress on Vitushkin’s conjecture.
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Back to Vitushkin



Estimates for Ahlfors regular sets

Quantitative Vitushkin’s conjecture
If E ⊂ R2 is compact and Fav(E) ≥ κ diam(E), do we have

γ(E) ≳κ diam(E)?

Partial results in Chang-Tolsa ’20 and D.-Villa ’22.

Corollary (D. ’24)
If E ⊂ R2 is Ahlfors regular and Fav(E) ≥ κ diam(E), then

γ(E) ≳κ diam(E).
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Sets with uniformly large Favard length

We say that a set E ⊂ R2 has uniformly large Favard length if it
is compact and for all x ∈ E and 0 < r < diam(E)

Fav(E ∩ B(x, r)) ≥ κr.

Sets with ULFL
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Sets with uniformly large Favard length

We say that a set E ⊂ R2 has uniformly large Favard length if it
is compact and for all x ∈ E and 0 < r < diam(E)

Fav(E ∩ B(x, r)) ≥ κr.

Corollary (D. ’24 + D.-Villa ’22)
If E ⊂ R2 has ULFL, then

γ(E) ≳κ diam(E).
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Proof of the main result



Goal

Theorem (D. ’24)
Let E ⊂ B(0, 1) be an Ahlfors regular set with Fav(E) ≳ H1(E).

Then, there exists a Lipschitz graph Γ ⊂ R2 with Lip(Γ) ≲ 1
and

H1(E ∩ Γ) ≳ H1(E).

Key tool: conical energies introduced in [Martikainen-Orponen
’18] and [Chang-Tolsa ’20].
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Cones

For any θ ∈ S1 and x ∈ R2 set ℓx,θ := x+ span(θ).

Given G ⊂ S1 and x ∈ R2 set

X(x,G) :=
∪
θ∈G

ℓx,θ.
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Cones

For any θ ∈ S1 and x ∈ R2 set ℓx,θ := x+ span(θ).

Given G ⊂ S1 and x ∈ R2 set

X(x,G) :=
∪
θ∈G

ℓx,θ.

Given 0 < r < R we define the truncated cones

X(x,G, r) := X(x,G) ∩ B(x, r)

and

X(x,G, r,R) := X(x,G,R) \ B(x, r).
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Conical energies

Given x ∈ R2, G ⊂ S1, and a measure µ we define the conical
energy of µ at x as

Eµ(x,G) =
∫ ∞

0

µ(X(x,G, r))
r

dr
r

∼
∑
k∈Z

µ(X(x,G, 2−k, 2−k+1))

2−k .
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Conical energies

Given x ∈ R2, G ⊂ S1, and a measure µ we define the conical
energy of µ at x as

Eµ(x,G) =
∫ ∞

0

µ(X(x,G, r))
r

dr
r ∼

∑
k∈Z

µ(X(x,G, 2−k, 2−k+1))

2−k .
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Finding Lipschitz graphs

Note: if Eµ(x, J) = 0 for µ-a.e. x with a fixed arc J ⊂ S1, then

µ(X(x, J)) = 0 for µ-a.e. x,

and so µ is concentrated on a Lipschitz graph.
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Finding Lipschitz graphs

Note: if Eµ(x, J) = 0 for µ-a.e. x with a fixed arc J ⊂ S1, then

µ(X(x, J)) = 0 for µ-a.e. x,

and so µ is concentrated on a Lipschitz graph.

Theorem (Martikainen-Orponen ’18)
Assume that E ⊂ B(0, 1) is Ahlfors regular, F ⊂ E with
H1(F) ∼ H1(E), and there exists an arc J ⊂ S1 with H1(J) ≳ 1
such that for µ = H1|F

Eµ(x, J) ≲ 1.

Then, there exists a Lipschitz graph Γ ⊂ R2 with Lip(Γ) ≲ 1
and H1(F ∩ Γ) ≳ 1.
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From big projections to conical energies

big projections ⇒ many lines with few intersections
⇒ cones with no intersections ⇒ subset of a Lipschitz graph
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From big projections to conical energies

big projections ⇒ many lines with few intersections
⇒ bounded conical energies [MO18]⇒ subset of a Lipschitz graph
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“Many lines with few intersections”

Lemma
Let E ⊂ B(0, 1) be an Ahlfors regular set with Fav(E) ≳ H1(E).

Then, there exists F ⊂ E with H1(F) ∼ H1(E) such that for
every x ∈ F there is G(x) ⊂ S1 with H1(G(x)) ≳ 1 and

Eµ(x,G(x)) ≲ 1.

πθ
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“Many lines with few intersections”

Lemma
Let E ⊂ B(0, 1) be an Ahlfors regular set with Fav(E) ≳ H1(E).
Then, there exists F ⊂ E with H1(F) ∼ H1(E) such that for
every x ∈ F there is G(x) ⊂ S1 with H1(G(x)) ≳ 1 and

Eµ(x,G(x)) ≲ 1.

This is close to [MO18], but there are two problems:
• G(x) ⊂ S1 might not be an arc,
• G(x) depends on the point x.

[MO18] requires that G(x) = J for some fixed arc J ⊂ S1.
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Good directions propagate

∫
F
Eµ(x, J)dµ(x) ≲

∫
F
Eµ(x,G∗(x))dµ(x) ≲

∫
F
Eµ(x,G(x))dµ(x) ≲ µ(F).
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Good directions propagate

∫
F
Eµ(x, J)dµ(x) ≲

∫
F
Eµ(x,G∗(x))dµ(x) ≲

∫
F
Eµ(x,G(x))dµ(x) ≲ µ(F).

Proof of the main result:

Lemma + Propagation + [MO18] = big piece of a Lipschitz graph.
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Toy version of the propagation result

Proposition
Let E ⊂ B(0, 1) be an Ahlfors regular set consisting of parallel
segments.

Assume that there is an arc J ⊂ S1 “parallel” to the
segments such that

E ∩ X(x, J) = {x} for x ∈ E.

Then, ∫
Eµ(x, 3J)dµ(x) ≲ H1(J)µ(E).
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Toy version of the propagation result

Proposition
Let E ⊂ B(0, 1) be an Ahlfors regular set consisting of parallel
segments. Assume that there is an arc J ⊂ S1 “parallel” to the
segments such that

E ∩ X(x, J) = {x} for x ∈ E.

Then, ∫
Eµ(x, 3J)dµ(x) ≲ H1(J)µ(E).

Eµ(x, 3J) = Eµ(x, 3J \ J) ∼
∑
k∈Z

µ(X(x, 3J \ J, 2−k, 2−k+1))

2−k

=
∑

k∈Bad(x)

µ(X(x, 3J \ J, 2−k, 2−k+1))

2−k ∼ H1(J) ·#Bad(x).
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Key geometric lemma
If k ∈ Bad(x), then there exists a “gap” I in π(E) such that

H1(I) ∼ H1(J) · 2−k and π(x) ∈ 5I.

2−k

x

π(E)
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Key geometric lemma
If k ∈ Bad(x), then there exists a “gap” I in π(E) such that

H1(I) ∼ H1(J) · 2−k and π(x) ∈ 5I.

The lemma implies the proposition:∫
E
Eµ(x, 3J)dµ(x) ∼ H1(J)

∫
E
#Bad(x)dµ(x)

= H1(J)
∑
k≥0

µ({x ∈ E : k ∈ Bad(x)})

KGL
≲ H1(J)

∑
k≥0

∑
I∈Gap,

H1(I)∼H1(J)2−k

µ(π−1(5I))

∼ H1(J)
∑
k≥0

∑
I∈Gap,

H1(I)∼H1(J)2−k

H1(I) ≲ H1(J) diam(E).
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“Proof” of the key geometric lemma
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“Proof” of the key geometric lemma

y′
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“Proof” of the key geometric lemma

y′

2−k

x

y
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A question

Qualitative ULFL
Suppose that E is compact, and for every x ∈ E we have

lim inf
r→0

Fav(E ∩ B(x, r))
r > 0.

Does this imply γ(E) > 0?

Thank you!
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