Favard length problem for Ahlfors regular sets

Damian Dąbrowski

Favard length of $E \subset \mathbb{R}^2$ is

$$\mathsf{Fav}(E) = \int_0^{\pi} \mathcal{H}^1(\pi_{\theta}(E)) \ d\theta.$$

Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. If Fav(E) > 0,

Favard length of $E \subset \mathbb{R}^2$ is

$$\mathsf{Fav}(E) = \int_0^\pi \mathcal{H}^1(\pi_\theta(E)) \ d\theta.$$

Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. If Fav(E) > 0,

Favard length of $E \subset \mathbb{R}^2$ is

$$\mathsf{Fav}(E) = \int_0^{\pi} \mathcal{H}^1(\pi_{\theta}(E)) \ d\theta.$$

Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. If Fav(E) > 0, then there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\mathcal{H}^1(E \cap \Gamma) > 0$.

Favard length of $E \subset \mathbb{R}^2$ is

$$\mathsf{Fav}(E) = \int_0^\pi \mathcal{H}^1(\pi_\theta(E)) \ d heta.$$

Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. If Fav(E) > 0, then there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\mathcal{H}^1(E \cap \Gamma) > 0$.

Favard length problem

Can we quantify the dependence of $Lip(\Gamma)$ and $\mathcal{H}^1(E \cap \Gamma)$ on Fav(E)?

Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. If Fav(E) > 0, then there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with

 $\mathcal{H}^1(E\cap \Gamma)>0.$

Naive conjecture

Let $E \subset [0,1]^2$ with $\mathcal{H}^1(E) \sim 1$ and $Fav(E) \gtrsim 1$. Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $Lip(\Gamma) \lesssim 1$ and

 $\mathcal{H}^1(E \cap \Gamma) \gtrsim 1.$

... is false

For any $\varepsilon > 0$ there exists a set $E = E_{\varepsilon} \subset [0, 1]^2$ with $\mathcal{H}^1(E) \sim 1$ and $Fav(E) \gtrsim 1$ such that for all *L*-Lipschitz graphs Γ

$\mathcal{H}^1(E\cap\Gamma)\lesssim L\varepsilon.$

0	0	٥	0	0	0	0	o	o	ϵ^2
٥	o	٥	o	o	o	o	o	o	tε
0	0	٥	0	0	0	0	0	0	*
o	0	o	0	o	o	o	0	o	
0	o	o	0	0	0	0	o	0	
0	0	٥	0	0	o	0	o	0	
0	o	٥	o	o	o	o	o	o	
0	0	0	0	0	0	0	0	0	

E consists of ε^{-2} uniformly distributed circles of radius ε^{2} .

We say that $E \subset \mathbb{R}^2$ is Ahlfors regular if for every $x \in E$ and 0 < r < diam(E)

 $C^{-1}r \leq \mathcal{H}^1(E \cap B(x,r)) \leq Cr.$

We say that $E \subset \mathbb{R}^2$ is Ahlfors regular if for every $x \in E$ and 0 < r < diam(E)

 $C^{-1}r \leq \mathcal{H}^1(E \cap B(x,r)) \leq Cr.$

Reasonable conjecture

Let $E \subset \mathbb{R}^2$ be an Ahlfors regular set with $Fav(E) \gtrsim \mathcal{H}^1(E)$.

Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\mathsf{Lip}(\Gamma) \lesssim 1$ and

 $\mathcal{H}^1(E \cap \Gamma) \gtrsim \mathcal{H}^1(E).$

Previous work

Reasonable conjecture

Let $E \subset \mathbb{R}^2$ be an Ahlfors regular set with $Fav(E) \gtrsim \mathcal{H}^1(E)$.

Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\mathsf{Lip}(\Gamma) \lesssim 1$ and

$$\mathcal{H}^1(E\cap\Gamma)\gtrsim \mathcal{H}^1(E).$$

Progress on the conjecture consisted of replacing "Fav(E) $\gtrsim \mathcal{H}^1(E)$ " by:

- David-Semmes '93: big projection + WGL
- Martikainen-Orponen '18: projections in L²
- Orponen '21: plenty of big projections
- **D. '22**: projections in L^{∞}

Theorem (D. '24) Let $E \subset \mathbb{R}^2$ be an Ahlfors regular set with $Fav(E) \ge \kappa \mathcal{H}^1(E)$. Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $Lip(\Gamma) \lesssim_{\kappa} 1$ and

 $\mathcal{H}^1(E\cap\Gamma)\gtrsim_{\kappa}\mathcal{H}^1(E).$

Theorem (D. '24)

Let $E \subset \mathbb{R}^2$ be an Ahlfors regular set with $Fav(E) \ge \kappa \mathcal{H}^1(E)$.

Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with Lip $(\Gamma) \lesssim_{\kappa} 1$ and

 $\mathcal{H}^1(E \cap \Gamma) \gtrsim_{\kappa} \mathcal{H}^1(E).$

Remarks:

- + explicit dependence on κ
- the proof likely works in higher dimensions

About the proof

- main tool: **conical energies** of Chang-Tolsa; continuation of D. '22
- key novelty: multiscale decomposition involving scales, locations, and directions:

Corollary: David-Semmes question

An Ahlfors regular set *E* contains **big pieces of Lipschitz graphs** if there exist *C*, *L* > 0 such that for every $x \in E$ and every 0 < r < diam(E) there exists an *L*-Lipschitz graph $\Gamma = \Gamma_{x,r}$ with $\mathcal{H}^1(E \cap \Gamma \cap B(x, r)) \ge Cr$.

An Ahlfors regular set *E* contains **big pieces of Lipschitz graphs** if there exist *C*, *L* > 0 such that for every $x \in E$ and every 0 < r < diam(E) there exists an *L*-Lipschitz graph $\Gamma = \Gamma_{x,r}$ with

 $\mathcal{H}^1(E\cap \Gamma\cap B(x,r))\geq Cr.$

An Ahlfors regular set *E* contains **big pieces of Lipschitz graphs** if there exist *C*, *L* > 0 such that for every $x \in E$ and every 0 < r < diam(E) there exists an *L*-Lipschitz graph $\Gamma = \Gamma_{x,r}$ with

 $\mathcal{H}^1(E\cap \Gamma\cap B(x,r))\geq Cr.$

An Ahlfors regular set *E* contains **big pieces of Lipschitz graphs** if there exist *C*, *L* > 0 such that for every $x \in E$ and every 0 < r < diam(E) there exists an *L*-Lipschitz graph $\Gamma = \Gamma_{x,r}$ with $\mathcal{H}^1(E \cap \Gamma \cap B(x, r)) \ge Cr$.

An Ahlfors regular set *E* contains **big pieces of Lipschitz graphs** if there exist *C*, *L* > 0 such that for every $x \in E$ and every 0 < r < diam(E) there exists an *L*-Lipschitz graph $\Gamma = \Gamma_{x,r}$ with $\mathcal{H}^1(E \cap \Gamma \cap B(x, r)) \ge Cr$.

An Ahlfors regular set *E* contains **big pieces of Lipschitz graphs** if there exist *C*, *L* > 0 such that for every $x \in E$ and every 0 < r < diam(E) there exists an *L*-Lipschitz graph $\Gamma = \Gamma_{x,r}$ with

 $\mathcal{H}^1(E\cap \Gamma\cap B(x,r))\geq Cr.$

Question (David-Semmes '93)

Let $E \subset \mathbb{R}^2$ be an Ahlfors regular set such that for every $x \in E$ and 0 < r < diam(E) we have $\text{Fav}(E \cap B(x, r)) \gtrsim r$.

Does E contain big pieces of Lipschitz graphs?

Corollary (D. '24)

Yes it does! Thus, ULFL \Leftrightarrow BPLG.

Corollary: Peres-Solomyak question

K₁

 K_3

 $K = \bigcap_n K_n$

$$K = \bigcap_n K_n$$

Question (Peres-Solomyak '02)

What is the rate of decay of

$$\mathsf{Fav}(K_n) \xrightarrow{n \to \infty} 0?$$

What about more general purely unrectifiable sets?

Quantifying pure unrectifiability

• Recall: $E \subset \mathbb{R}^2$ is **purely unrectifiable** if for every rectifiable curve Γ we have $\mathcal{H}^1(E \cap \Gamma) = 0$.

Quantifying pure unrectifiability

- Recall: $E \subset \mathbb{R}^2$ is **purely unrectifiable** if for every rectifiable curve Γ we have $\mathcal{H}^1(E \cap \Gamma) = 0$.
- Consider

$$\ell(E,\delta) = \sup_{\Gamma} \mathcal{H}^{1}_{\infty}(E \cap \Gamma(\delta))$$

with supremum taken over curves Γ with $\mathcal{H}^1(\Gamma) = \operatorname{diam}(E)$.

Quantifying pure unrectifiability

- Recall: $E \subset \mathbb{R}^2$ is **purely unrectifiable** if for every rectifiable curve Γ we have $\mathcal{H}^1(E \cap \Gamma) = 0$.
- Consider

$$\ell(E,\delta) = \sup_{\Gamma} \mathcal{H}^{1}_{\infty}(E \cap \Gamma(\delta))$$

with supremum taken over curves Γ with $\mathcal{H}^1(\Gamma) = \operatorname{diam}(E)$.

+ For purely unrectifiable sets with 0 < $\mathcal{H}^1(E)$ < ∞ we have

$$\operatorname{Fav}(E(\delta)) \xrightarrow{\delta \to 0} 0 \text{ and } \ell(E, \delta) \xrightarrow{\delta \to 0} 0.$$

Question (Peres-Solomyak '02) Can one estimate $Fav(E(\delta))$ in terms of $\ell(E, \delta)$?

If *E* is **self-similar** or **random**, there are plenty of estimates for $Fav(E(\delta))$:

Peres-Solomyak '02, Tao '09, Łaba-Zhai '10, Bateman-Volberg '10, Nazarov-Peres-Volberg '11, Bond-Łaba-Volberg '14, Bond-Łaba-Zahl '14, Wilson '17, Bongers '19, Cladek-Davey-Taylor '20, Bongers-Taylor '21, Łaba-Marshall '22, Davey-Taylor '22, Vardakis-Volberg '24...

In general, no estimate for $Fav(E(\delta))$ in terms of $\ell(E, \delta)$.

New estimate

Corollary (D. '24) If $E \subset \mathbb{R}^2$ is Ahlfors regular, then $Fav(E(\delta)) \leq \frac{C_{\epsilon}}{(\log \log \log(\ell(E, \delta)^{-1}))^{1/3-\epsilon}}.$

• For the 4-corners Cantor set:

$$\operatorname{Fav}(K_n) \leq \frac{C_{\epsilon}}{(\log \log \log n)^{1/3-\epsilon}}.$$

State of the art is [Nazarov-Peres-Volberg '11]:

$$Fav(K_n) \leq \frac{C}{n^c}.$$

· No self-similarity needed!

Corollary: Vitushkin's conjecture

Removable sets

A compact set $E \subset \mathbb{C}$ is removable for bounded analytic functions if for any open $\Omega \subset \mathbb{C}$ containing E, each bounded analytic function $f: \Omega \setminus E \to \mathbb{C}$ has an analytic extension to Ω .

Removable sets

A compact set $E \subset \mathbb{C}$ is removable for bounded analytic functions if for any open $\Omega \subset \mathbb{C}$ containing E, each bounded analytic function $f: \Omega \setminus E \to \mathbb{C}$ has an analytic extension to Ω .

Removable sets

A compact set $E \subset \mathbb{C}$ is removable for bounded analytic functions if for any open $\Omega \subset \mathbb{C}$ containing E, each bounded analytic function $f: \Omega \setminus E \to \mathbb{C}$ has an analytic extension to Ω .

Analytic capacity

In 1947 Ahlfors characterized removability in terms of **analytic capacity**:

E is removable $\Leftrightarrow \gamma(E) = 0$,

where

$$\begin{split} \gamma(E) &= \sup\{|f'(\infty)| \ : \ f : \mathbb{C} \setminus E \to \mathbb{C} \text{ analytic, } \|f\|_{\infty} \leq 1\}, \\ f'(\infty) &= \lim_{z \to \infty} z(f(z) - f(\infty)). \end{split}$$

Analytic capacity

In 1947 Ahlfors characterized removability in terms of **analytic capacity**:

E is removable $\Leftrightarrow \gamma(E) = 0$,

where

$$\begin{split} \gamma(E) &= \sup\{|f'(\infty)| \ : \ f : \mathbb{C} \setminus E \to \mathbb{C} \text{ analytic}, \ \|f\|_{\infty} \leq 1\}, \\ f'(\infty) &= \lim_{z \to \infty} z(f(z) - f(\infty)). \end{split}$$

Vitushkin's conjecture

$$\gamma(E) = 0 \quad \Leftrightarrow \quad \mathsf{Fav}(E) = 0$$

Analytic capacity

In 1947 Ahlfors characterized removability in terms of **analytic capacity**:

E is removable $\Leftrightarrow \gamma(E) = 0$,

where

$$\begin{split} \gamma(E) &= \sup\{|f'(\infty)| \ : \ f : \mathbb{C} \setminus E \to \mathbb{C} \text{ analytic}, \ \|f\|_{\infty} \leq 1\}, \\ f'(\infty) &= \lim_{z \to \infty} z(f(z) - f(\infty)). \end{split}$$

Vitushkin's conjecture

E is removable \Leftrightarrow Fav(E) = 0

Vitushkin's conjecture

$$\gamma(E) = 0 \quad \Leftrightarrow \quad \mathsf{Fav}(E) = 0$$

 If dim_H(E) < 1 or dim_H(E) > 1 Vitushkin's conjecture is true! (easy)

Vitushkin's conjecture

$$\gamma(E) = 0 \quad \Leftrightarrow \quad \mathsf{Fav}(E) = 0$$

- If dim_H(E) < 1 or dim_H(E) > 1 Vitushkin's conjecture is true! (easy)
- In the case H¹(E) < ∞ Vitushkin's conjecture is true! (Calderón '77, David '98)

Vitushkin's conjecture

$$\gamma(E) = 0 \quad \Leftrightarrow \quad \mathsf{Fav}(E) = 0$$

- If dim_H(E) < 1 or dim_H(E) > 1 Vitushkin's conjecture is true! (easy)
- In the case H¹(E) < ∞ Vitushkin's conjecture is true! (Calderón '77, David '98)
- In the case $\mathcal{H}^1(E) = \infty$, Vitushkin's conjecture is **false** (Mattila '86, Jones-Murai '88):

$$Fav(E) = 0 \Rightarrow \gamma(E) = 0.$$

Vitushkin's conjecture

$$\gamma(E) = 0 \quad \Leftrightarrow \quad \mathsf{Fav}(E) = 0$$

- If dim_H(E) < 1 or dim_H(E) > 1 Vitushkin's conjecture is true! (easy)
- In the case H¹(E) < ∞ Vitushkin's conjecture is true! (Calderón '77, David '98)
- In the case $\mathcal{H}^1(E) = \infty$, Vitushkin's conjecture is **false** (Mattila '86, Jones-Murai '88):

$$Fav(E) = 0 \quad \Rightarrow \quad \gamma(E) = 0.$$

What about

$$Fav(E) = 0 \quad \Leftarrow \quad \gamma(E) = 0?$$

Quantitative Vitushkin's conjecture

Quantitative Vitushkin's conjecture

If $E \subset \mathbb{R}^2$ is compact and $Fav(E) \ge \kappa \operatorname{diam}(E)$, do we have

 $\gamma(E) \gtrsim_{\kappa} \operatorname{diam}(E)?$

Partial results in Chang-Tolsa '20 and D.-Villa '22.

Quantitative Vitushkin's conjecture

Quantitative Vitushkin's conjecture

If $E \subset \mathbb{R}^2$ is compact and $Fav(E) \ge \kappa \operatorname{diam}(E)$, do we have

 $\gamma(E) \gtrsim_{\kappa} \operatorname{diam}(E)?$

Partial results in Chang-Tolsa '20 and D.-Villa '22.

Corollary (D. + D.-Villa '22) If $E \subset \mathbb{R}^2$ is compact and $Fav(E \cap B(x, r)) \ge \kappa r$ for all $x \in E$, then

 $\gamma(E) \gtrsim_{\kappa} \operatorname{diam}(E).$

Quantitative Vitushkin's conjecture

Quantitative Vitushkin's conjecture

If $E \subset \mathbb{R}^2$ is compact and $Fav(E) \ge \kappa \operatorname{diam}(E)$, do we have

 $\gamma(E) \gtrsim_{\kappa} \operatorname{diam}(E)?$

Partial results in Chang-Tolsa '20 and D.-Villa '22.

Corollary (D. + D.-Villa '22) If $E \subset \mathbb{R}^2$ is compact and $Fav(E \cap B(x, r)) \ge \kappa r$ for all $x \in E$, then

 $\gamma(E) \gtrsim_{\kappa} \operatorname{diam}(E).$

Thank you!