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Vitushkin’s conjecture



Riemann’s theorem on removable singularities

Theorem (Riemann)
Ifzo e QCc Candf:Q\{z} — Cis analytic and bounded,
then f can by extended analytically to all of Q.

f:Q\{z} = C
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A compact set E C C is removable for bounded analytic
functions if for any open Q c C containing E, each bounded
analytic function f: Q\ E — C has an analytic extension to .
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Analytic capacity

In 1947 Ahlfors characterized removability in terms of analytic
capacity:

Eisremovable <« ~(E)=0,

where

A(E) = sup{If'(s0)] : f:C\ E— Canalytic, flloo < 1},
F'(00) = lim 2(f(2) ~ f(c0)).
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Painlevé problem

Painlevé problem
Find a geometric characterization of removable compact sets,
l.e. compact sets with v(E) = 0.

Classical:

- If H'(E) = 0, then ~(E) = 0.

- If dimy(E) > 1, then y(E) > 0.

- If E is a segment, then y(E) = ¢ H'(E).
Question
v(E)=0 < H'(E)=0? No!

There are sets £ ¢ C with y(E) = 0 and 0 < H'(E) < oc.
(Vitushkin 1959, Garnett, lvanov 1970s)
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Vitushkin's conjecture

The sets constructed by Vitushkin, Garnett and Ivanov had very
small projections. More precisely, they satisfied

H'(mo(E)) = 0
for a.e. direction 6 € [0, ].

Define Favard length of E as

Fav(E) = /Oﬂ H(mo(E)) 6.

Vitushkin’s conjecture

vE)=0 < Fav(E)=0
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Solution to Vitushkin’s conjecture

Vitushkin’s conjecture

vE)=0 < Fav(E)=0

- In the case H'(E) < oo Vitushkin’'s conjecture is true!
(Calderon '77, David '98)

- In the case H'(E) = oo, Vitushkin's conjecture is false
(Mattila '86, Jones-Murai '88):

Fav(E)=0 # ~(E)=0.
- What about
Fav(E)=0 <« ~(E)=07?
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Open problems

Problem 1 (qualitative)
Fav(E) >0 = ~4(E)>07?

Open for sets E ¢ C with dimyg(E) = 1 and non-o-finite
H'-measure.

Problem 2 (quantitative)

v(E) 2 Fav(E)?
Y(E) ZFav(e) 17

Open even for sets with finite length.



What happens for sets with finite
length?
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Two ingredients

Theorem (Besicovitch 1939)

Let E c R? with 0 < H'(E) < oo. If Fav(E) > 0, then there
exists a Lipschitz graph I ¢ R? with #'(ENT) > 0.
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Two ingredients

Theorem (Besicovitch 1939)

Let E c R? with 0 < H'(E) < oo. If Fav(E) > 0, then there
exists a Lipschitz graph I ¢ R? with #'(ENT) > 0.

Theorem (Calderon 1977)
If [ is a rectifiable curve and F C T satisfies #'(F) > 0, then

~(F) > 0.

This is a corollary of Calderdn’s proof of the L2-boundedness of
Cauchy transform on Lipschitz graphs with small constant.
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Vitushkin’s conjecture when H'(E) < oo

Goal

Fav(E)>0 = ~(E)>0

If 0 < H'(E) < oo and Fav(E) > 0, then by the Besicovitch
projection theorem 3T with H'(ENT) > 0

(Calderon)
Y(E) > ~(ENT) >

- Why does it only work for sets with finite length?

- Why does it give no quantitative estimates?



First problem

The Besicovitch projection theorem fails for sets with infinite
length!

wl—

w|—

w|—

Set K = Cy3 x Cy3 satisfies Fav(K) 2 1and #'(KNT) = 0 for
every rectifiable curve.
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Second problem

Recall: if 0 < H'(E) < oo and Fav(E) > 0, then 3T with
H'(ENT) > 0 and

(Calderon)
Y(E) >~(ENT) >

There are estimates on v(ENT) depending on H'(ENT), e.g. if
Iis an L-Lipschitz graph, then

YENT) > H(ENT)...
..but the Besicovitch projection theorem gives no quantitative
bound neither on H'(ENT), nor on Lip(I)!

Favard length problem

Can we quantify the dependence of Lip(I') and #'(ENT) on
Fav(E)?

n



Favard length problem




Naive conjecture...

Theorem (Besicovitch 1939)

Let E C R? with 0 < H'(E) < oc. If Fav(E) > 0, then there
exists a Lipschitz graph I ¢ R? with

H'(ENT) > 0.

Naive conjecture

Let E C [0,1]? with H'(E) ~ 1 and Fav(E) > 1. Then, there
exists a Lipschitz graph ' c R? with Lip(I') < 1and

H'(ENT) > 1

12



For any e > 0 there exists a set £ = E. C [0, 1]? with H'(E) ~ 1
and Fav(E) = 1 such that for all L-Lipschitz graphs I

H'(ENT) < Le.

° o o o o o o o 4€

o o o o o o o o o

o o o o o o o

E consists of e=2 uniformly distributed circles of radius 2.
13



Reasonable conjecture

We say that £ c R? is Ahlfors regular if for every x € E and
0 < r < diam(E)

C'r <HYENB(x,r)) < Cr.
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Reasonable conjecture

We say that £ c R? is if for every x € E and
0 < r < diam(E)

C'r<H'(ENB(x,r)) < Cr.

Reasonable conjecture
Let E ¢ R? be an Ahlfors regular set with Fav(E) > #H'(E).

Then, there exists a Lipschitz graph ' ¢ R? with Lip(I") < 1

and
H'(ENT) > H'(F).

Variations on this conjecture appearing since the 90s in the
works of David and Semmes, Mattila, Peres and Solomyak.

14



What is this really about?

many lines with few intersections
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What is this really about?

many lines with few intersections

= cones with no intersections
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What is this really about?

many lines with few intersections
= cones with no intersections

= subset of a Lipschitz graph




Previous work

Reasonable conjecture
Let E ¢ R? be an Ahlfors regular set with Fav(E) > #H'(E).

Then, there exists a Lipschitz graph ' ¢ R? with Lip(l") <1
and
H'(ENT) > H'(E).

Progress on the conjecture consisted of replacing
“Fav(E) > H'(E)" by:

- David-Semmes '93: big projection + WGL

- Martikainen-Orponen '18: projections in L
- Orponen "21: plenty of big projections

- D.'22: projections in L*°



New result: the conjecture is true!

Theorem (D. '24)
Let E C R? be an Ahlfors regular set with Fav(E) > xH(E).

Then, there exists a Lipschitz graph I ¢ R? with Lip(I") <, 1
and

H'(ENT) Zx H'(E).



New result: the conjecture is true!

Theorem (D. '24)
Let E C R? be an Ahlfors regular set with Fav(E) > xH(E).

Then, there exists a Lipschitz graph I ¢ R? with Lip(I") <, 1
and

H'(ENT) Zx H'(E).

Corollaries:

- a positive answer to a 1993 question of David and Semmes,

- a positive answer to a 2002 question of Peres and
Solomyak,

- progress on Vitushkin's conjecture.
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- uses [Martikainen-Orponen 18] as a black-box

- key novelty: multiscale decomposition involving scales,
locations, and directions:
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About the proof

- main tool: of [Chang-Tolsa '20]

- uses [Martikainen-Orponen 18] as a black-box

- key novelty: multiscale decomposition involving scales,
locations, and
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Back to Vitushkin




Estimates for Ahlfors regular sets

Quantitative Vitushkin’s conjecture
If £ C R? is compact and Fav(E) > xdiam(E), do we have

V(E) X diam(E)?

Partial results in Chang-Tolsa 20 and D.-Villa 22.
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Estimates for Ahlfors regular sets

Quantitative Vitushkin’s conjecture
If £ C R? is compact and Fav(E) > xdiam(E), do we have

V(E) X diam(E)?

Partial results in Chang-Tolsa 20 and D.-Villa 22.

Corollary (D. '24)
If £ C R? is Ahlfors regular and Fav(E) > xdiam(E), then

Y(E) 2 diam(E).

Proof: v(E) > v(ENT) 2« H'(ENT) 2 diam(E). [



Sets with uniformly large Favard length

We say that a set E c R? has uniformly large Favard length if it
is compact and for all x € £ and 0 < r < diam(E)

Fav(EN B(x,r)) > kr.

Sets with ULFL

20



Sets with uniformly large Favard length

We say that a set E c R? has uniformly large Favard length if it
is compact and for all x € £ and 0 < r < diam(E)

Fav(EN B(x,r)) > kr.

A set violating ULFL
20



Sets with uniformly large Favard length

We say that a set E c R? has uniformly large Favard length if it
is compact and for all x € £ and 0 < r < diam(E)

Fav(EN B(x,r)) > kr.

O,

A set violating ULFL
20



Sets with uniformly large Favard length

We say that a set £ C R? has if it
is compact and for all x € £ and 0 < r < diam(E)

Fav(EN B(x,r)) > kr.

Corollary (D. 24 + D.-Villa '22)
If E c R? has ULFL, then

Y(E) 21 diam(E).

Proof: A stopping-time argument from [D.-Villa '22] gives a good
approximation of “lower content regular sets” with Ahlfors reg-

ular sets, so we can use the estimates from [D. '24]. -
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Sets with uniformly large Favard length

We say that a set £ C R? has if it
is compact and for all x € £ and 0 < r < diam(E)

Fav(EN B(x,r)) > kr.

Corollary (D. 24 + D.-Villa '22)
If E c R? has ULFL, then

Y(E) 21 diam(E).

Proof: A stopping-time argument from [D.-Villa '22] gives a good
approximation of “lower content regular sets” with Ahlfors reg-

ular sets, so we can use the estimates from [D. '24]. -

Thank you! .
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