Favard length and quantitative rectifiability

Damian Dąbrowski

Vitushkin's conjecture

Riemann's theorem on removable singularities

Theorem (Riemann)

If *z*₀ ∈ Ω ⊂ \mathbb{C} and *f* : Ω \ {*z*₀} \rightarrow \mathbb{C} is analytic and bounded, then *f* can by extended analytically to all of Ω.

Riemann's theorem on removable singularities

Theorem (Riemann)

If *z*₀ ∈ Ω ⊂ \mathbb{C} and *f* : Ω \ {*z*₀} \rightarrow \mathbb{C} is analytic and bounded, then *f* can by extended analytically to all of Ω.

Removable sets

A compact set *E ⊂* C is removable for bounded analytic functions if for any open Ω *⊂* C containing *E*, each bounded analytic function $f : \Omega \setminus E \to \mathbb{C}$ has an analytic extension to Ω .

Removable sets

A compact set *E ⊂* C is removable for bounded analytic functions if for any open Ω *⊂* C containing *E*, each bounded analytic function $f : \Omega \setminus E \to \mathbb{C}$ has an analytic extension to Ω .

Removable sets

A compact set *E ⊂* C is removable for bounded analytic functions if for any open Ω *⊂* C containing *E*, each bounded analytic function $f : \Omega \setminus E \to \mathbb{C}$ has an analytic extension to Ω .

In 1947 Ahlfors characterized removability in terms of analytic capacity:

E is removable
$$
\Leftrightarrow \gamma(E) = 0
$$
,

where

$$
\gamma(E) = \sup\{|f'(\infty)| : f : \mathbb{C} \setminus E \to \mathbb{C} \text{ analytic}, ||f||_{\infty} \le 1\},
$$

$$
f'(\infty) = \lim_{z \to \infty} z(f(z) - f(\infty)).
$$

Painlevé problem

Find a geometric characterization of removable compact sets, i.e. compact sets with $\gamma(E) = 0$.

Painlevé problem

Find a geometric characterization of removable compact sets, i.e. compact sets with $\gamma(E) = 0$.

Classical:

- \cdot If $\mathcal{H}^1(E) = 0$, then $\gamma(E) = 0$.
- If dim_H(*E*) > 1 , then $\gamma(E) > 0$.

Painlevé problem

Find a geometric characterization of removable compact sets, i.e. compact sets with $\gamma(E) = 0$.

Classical:

- \cdot If $\mathcal{H}^1(E) = 0$, then $\gamma(E) = 0$.
- If dim_H(*E*) > 1 , then $\gamma(E) > 0$.
- \cdot If *E* is a segment, then $\gamma(E) = c \mathcal{H}^1(E)$.

Painlevé problem

Find a geometric characterization of removable compact sets, i.e. compact sets with $\gamma(E) = 0$.

Classical:

- \cdot If $\mathcal{H}^1(E) = 0$, then $\gamma(E) = 0$.
- If dim_H(*E*) > 1 , then $\gamma(E) > 0$.
- \cdot If *E* is a segment, then $\gamma(E) = c \mathcal{H}^1(E)$.

Question

 $\gamma(E) = 0 \quad \Leftrightarrow \quad \mathcal{H}^1(E) = 0$?

Painlevé problem

Find a geometric characterization of removable compact sets, i.e. compact sets with $\gamma(E) = 0$.

Classical:

- \cdot If $\mathcal{H}^1(E) = 0$, then $\gamma(E) = 0$.
- If dim_H(*E*) > 1 , then $\gamma(E) > 0$.
- \cdot If *E* is a segment, then $\gamma(E) = c \mathcal{H}^1(E)$.

Question

 $\gamma(E) = 0 \quad \Leftrightarrow \quad \mathcal{H}^1(E) = 0$? No!

There are sets $E\subset\mathbb{C}$ with $\gamma(E)=0$ and $0<\mathcal{H}^1(E)<\infty.$ (Vitushkin 1959, Garnett, Ivanov 1970s)

The sets constructed by Vitushkin, Garnett and Ivanov had very small projections. More precisely, they satisfied

 $\mathcal{H}^1(\pi_\theta(E))=0$

for a.e. direction $\theta \in [0, \pi]$.

The sets constructed by Vitushkin, Garnett and Ivanov had very small projections. More precisely, they satisfied

 $\mathcal{H}^1(\pi_\theta(E))=0$

for a.e. direction $\theta \in [0, \pi]$.

Define Favard length of *E* as

$$
\mathsf{Fav}(\mathsf{E}) = \int_0^\pi \mathcal{H}^1(\pi_\theta(\mathsf{E})) \; d\theta.
$$

Vitushkin's conjecture

$$
\gamma(E) = 0 \quad \Leftrightarrow \quad \text{Fav}(E) = 0
$$

Solution to Vitushkin's conjecture

Vitushkin's conjecture

$$
\gamma(E) = 0 \quad \Leftrightarrow \quad \text{Fav}(E) = 0
$$

 \cdot In the case $\mathcal{H}^1(E)<\infty$ Vitushkin's conjecture is $\mathsf{true}!$ (Calderón '77, David '98)

Solution to Vitushkin's conjecture

Vitushkin's conjecture

$$
\gamma(E) = 0 \quad \Leftrightarrow \quad \text{Fav}(E) = 0
$$

- \cdot In the case $\mathcal{H}^1(E)<\infty$ Vitushkin's conjecture is $\mathsf{true}!$ (Calderón '77, David '98)
- \cdot In the case $\mathcal{H}^1(E)=\infty$, Vitushkin's conjecture is **false** (Mattila '86, Jones-Murai '88):

$$
\mathsf{Fav}(\mathsf{E})=0\quad \not\Rightarrow\quad \gamma(\mathsf{E})=0.
$$

Solution to Vitushkin's conjecture

Vitushkin's conjecture

$$
\gamma(E) = 0 \quad \Leftrightarrow \quad \text{Fav}(E) = 0
$$

- \cdot In the case $\mathcal{H}^1(E)<\infty$ Vitushkin's conjecture is $\mathsf{true}!$ (Calderón '77, David '98)
- \cdot In the case $\mathcal{H}^1(E)=\infty$, Vitushkin's conjecture is **false** (Mattila '86, Jones-Murai '88):

$$
\mathsf{Fav}(\mathsf{E})=0\quad \not\Rightarrow\quad \gamma(\mathsf{E})=0.
$$

• What about

$$
\mathsf{Fav}(E) = 0 \quad \Leftarrow \quad \gamma(E) = 0?
$$

Problem 1 (qualitative)

$Fav(E) > 0 \Rightarrow \gamma(E) > 0$?

Open for sets $E \subset \mathbb{C}$ with $\dim_H(E) = 1$ and non- σ -finite \mathcal{H}^1 -measure.

Problem 1 (qualitative)

$$
\mathsf{Fav}(E) > 0 \quad \Rightarrow \quad \gamma(E) > 0?
$$

Open for sets $E \subset \mathbb{C}$ with dim_H(E) = 1 and non- σ -finite \mathcal{H}^1 -measure.

Problem 2 (quantitative)

γ(*E*) ≳ Fav(*E*)? $γ(E)$ \gtrsim Fav(*E*) 1?

Open even for sets with finite length.

What happens for sets with finite length?

Theorem (Besicovitch 1939)

Let
$$
E \subset \mathbb{R}^2
$$
 with $0 < \mathcal{H}^1(E) < \infty$. If $\text{Fav}(E) > 0$,

Theorem (Besicovitch 1939)

Let
$$
E \subset \mathbb{R}^2
$$
 with $0 < \mathcal{H}^1(E) < \infty$. If $\text{Fav}(E) > 0$,

Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. If $\mathsf{Fav}(E) > 0$, then there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\mathcal{H}^1(E \cap \Gamma) > 0$.

Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. If $\mathsf{Fav}(E) > 0$, then there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\mathcal{H}^1(E \cap \Gamma) > 0$.

Theorem (Calderón 1977)

If Γ is a rectifiable curve and *F ⊂* Γ satisfies *H*¹ (*F*) *>* 0, then $\gamma(F) > 0$.

This is a corollary of Calderón's proof of the *L* 2 -boundedness of Cauchy transform on Lipschitz graphs with small constant.

Vitushkin's conjecture when $\mathcal{H}^1(E)<\infty$

Goal

$$
\mathsf{Fav}(E) > 0 \quad \Rightarrow \quad \gamma(E) > 0
$$

If $0 < H^1(E) < \infty$ and $\mathsf{Fav}(E) > 0$, then by the Besicovitch $\text{projection theorem } \exists \Gamma \text{ with } \mathcal{H}^1(E \cap \Gamma) > 0$

$$
\gamma(E) \geq \gamma(E \cap \Gamma)
$$

Vitushkin's conjecture when $\mathcal{H}^1(E)<\infty$

Goal

$$
\mathsf{Fav}(E) > 0 \quad \Rightarrow \quad \gamma(E) > 0
$$

If $0 < H^1(E) < \infty$ and $\mathsf{Fav}(E) > 0$, then by the Besicovitch $\text{projection theorem } \exists \Gamma \text{ with } \mathcal{H}^1(E \cap \Gamma) > 0$

$$
\gamma(E) \geq \gamma(E \cap \Gamma) \stackrel{\text{(Calderón)}}{>} 0.
$$

■

Vitushkin's conjecture when $\mathcal{H}^1(E)<\infty$

Goal

$$
\mathsf{Fav}(E) > 0 \quad \Rightarrow \quad \gamma(E) > 0
$$

If $0 < H^1(E) < \infty$ and $\mathsf{Fav}(E) > 0$, then by the Besicovitch $\text{projection theorem } \exists \Gamma \text{ with } \mathcal{H}^1(E \cap \Gamma) > 0$

$$
\gamma(E) \geq \gamma(E \cap \Gamma) \stackrel{\text{(Calderón)}}{>} 0.
$$

- Why does it only work for sets with finite length?
- Why does it give no quantitative estimates?

■

First problem

The Besicovitch projection theorem **fails** for sets with infinite length!

 $\mathsf{Set}~\mathsf{K}=\mathsf{C}_{1/3}\times \mathsf{C}_{1/3}$ satisfies $\mathsf{Fav}(\mathsf{K})\gtrsim 1$ and $\mathcal{H}^1(\mathsf{K}\cap \mathsf{\Gamma})=0$ for every rectifiable curve.

 $\text{Recall: if } 0 < \mathcal{H}^1(E) < \infty \text{ and } \text{Fav}(E) > 0 \text{, then } \exists \Gamma \text{ with } \Gamma.$ *H*1 (*E ∩* Γ) *>* 0 and

 $γ(E) ≥ γ(E ∩ Γ)$ ^(Calderón) 0*.*

 $\text{Recall: if } 0 < \mathcal{H}^1(E) < \infty \text{ and } \text{Fav}(E) > 0 \text{, then } \exists \Gamma \text{ with } \Gamma.$ *H*1 (*E ∩* Γ) *>* 0 and

$$
\gamma(E) \geq \gamma(E \cap \Gamma) \sup_{k=1}^{\text{(Calderón)}} 0.
$$

There are estimates on *γ*(*E ∩* Γ) depending on *H*¹ (*E ∩* Γ), e.g. if Γ is an *L*-Lipschitz graph, then

γ(*E ∩* Γ) ≳*^L H*¹ (*E ∩* Γ)*...*

 $\text{Recall: if } 0 < \mathcal{H}^1(E) < \infty \text{ and } \text{Fav}(E) > 0 \text{, then } \exists \Gamma \text{ with } \Gamma.$ *H*1 (*E ∩* Γ) *>* 0 and

$$
\gamma(E) \geq \gamma(E \cap \Gamma)^{\text{(Calderón)}} 0.
$$

There are estimates on *γ*(*E ∩* Γ) depending on *H*¹ (*E ∩* Γ), e.g. if Γ is an *L*-Lipschitz graph, then

$$
\gamma(E\cap\Gamma)\gtrsim_L \mathcal{H}^1(E\cap\Gamma)...
$$

...but the Besicovitch projection theorem gives **no quantitative bound** neither on \mathcal{H}^1 ($E \cap Γ$), nor on Lip(Γ)!

 $\text{Recall: if } 0 < \mathcal{H}^1(E) < \infty \text{ and } \text{Fav}(E) > 0 \text{, then } \exists \Gamma \text{ with } \Gamma.$ *H*1 (*E ∩* Γ) *>* 0 and

$$
\gamma(E) \geq \gamma(E \cap \Gamma) \sup_{k=1}^{\text{(Calderón)}} 0.
$$

There are estimates on *γ*(*E ∩* Γ) depending on *H*¹ (*E ∩* Γ), e.g. if Γ is an *L*-Lipschitz graph, then

$$
\gamma(E \cap \Gamma) \gtrsim_{\mathsf{L}} \mathcal{H}^1(E \cap \Gamma)...
$$

...but the Besicovitch projection theorem gives **no quantitative bound** neither on \mathcal{H}^1 ($E \cap Γ$), nor on Lip(Γ)!

Favard length problem

Can we quantify the dependence of Lip(Γ) and *H*¹ (*E ∩* Γ) on Fav(*E*)?

Favard length problem

Theorem (Besicovitch 1939)

Let $E\subset \mathbb{R}^2$ with $0<\mathcal{H}^1(E)<\infty.$ If $\mathsf{Fav}(E)>0,$ then there exists a Lipschitz graph **Γ** ⊂ \mathbb{R}^2 with

 $H^1(E \cap Γ) > 0$.

Naive conjecture

Let $E\subset [0,1]^2$ with $\mathcal{H}^1(E)\sim 1$ and $\mathsf{Fav}(E)\gtrsim 1.$ Then, there exists a Lipschitz graph $\mathsf{\Gamma} \subset \mathbb{R}^2$ with $\mathsf{Lip}(\mathsf{\Gamma}) \lesssim$ 1 and

 $\mathcal{H}^1(E \cap \Gamma) \gtrsim 1$.

... is false

For any $\varepsilon > 0$ there exists a set $E = E_{\varepsilon} \subset [0,1]^2$ with $\mathcal{H}^1(E) \sim 1$ and Fav(*E*) ≳ 1 such that for all *L*-Lipschitz graphs Γ

\mathcal{H}^1 (**E** ∩ **Γ**) \lesssim *Lε*.

E consists of ε^{-2} uniformly distributed circles of radius ε^2 .

Reasonable conjecture

We say that *E ⊂* R 2 is Ahlfors regular if for every *x ∈ E* and $0 < r <$ diam(*E*)

 $C^{-1}r$ ≤ $H^1(E \cap B(x,r))$ ≤ Cr.

Reasonable conjecture

We say that *E ⊂* R 2 is Ahlfors regular if for every *x ∈ E* and $0 < r <$ diam(*E*)

```
C^{-1}r ≤ H^1(E \cap B(x,r)) ≤ Cr.
```
Reasonable conjecture

Let $E\subset \mathbb{R}^2$ be an Ahlfors regular set with $\mathsf{Fav}(E)\gtrsim \mathcal{H}^1(E).$

Then, there exists a Lipschitz graph Γ *⊂* R ² with Lip(Γ) ≲ 1 and

$$
\mathcal{H}^1(E \cap \Gamma) \gtrsim \mathcal{H}^1(E).
$$

Variations on this conjecture appearing since the 90s in the works of David and Semmes, Mattila, Peres and Solomyak.

What is this really about?

many lines with few intersections

What is this really about?

many lines with few intersections

⇒ cones with no intersections

What is this really about?

many lines with few intersections

- *⇒* cones with no intersections
	- *⇒* subset of a Lipschitz graph

Previous work

Reasonable conjecture

Let $E\subset \mathbb{R}^2$ be an Ahlfors regular set with $\mathsf{Fav}(E)\gtrsim \mathcal{H}^1(E).$

Then, there exists a Lipschitz graph Γ *⊂* R ² with Lip(Γ) ≲ 1 and

 $\mathcal{H}^1(E \cap \Gamma) \gtrsim \mathcal{H}^1(E)$.

Progress on the conjecture consisted of replacing "Fav $(E)\gtrsim \mathcal{H}^1(E)$ " by:

- David-Semmes '93: big projection + WGL
- Martikainen-Orponen '18: projections in *L* 2
- Orponen '21: plenty of big projections
- D. '22: projections in *L∞*

Theorem (D. '24)

Let $E \subset \mathbb{R}^2$ be an Ahlfors regular set with $\mathsf{Fav}(E) \geq \kappa \mathcal{H}^1(E).$

Then, there exists a Lipschitz graph Γ *⊂* R ² with Lip(Γ) ≲*^κ* 1 and

 $\mathcal{H}^1(E \cap \Gamma) \gtrsim_{\kappa} \mathcal{H}^1(E)$ *.*

Theorem (D. '24)

Let $E \subset \mathbb{R}^2$ be an Ahlfors regular set with $\mathsf{Fav}(E) \geq \kappa \mathcal{H}^1(E).$

Then, there exists a Lipschitz graph Γ *⊂* R ² with Lip(Γ) ≲*^κ* 1 and

$$
\mathcal{H}^1(E \cap \Gamma) \gtrsim_{\kappa} \mathcal{H}^1(E).
$$

Corollaries:

- a positive answer to a 1993 question of David and Semmes,
- a positive answer to a 2002 question of Peres and Solomyak,
- progress on Vitushkin's conjecture.

- main tool: conical energies of [Chang-Tolsa '20]
- uses [Martikainen-Orponen '18] as a black-box
- key novelty: multiscale decomposition involving scales, locations, and directions:

- main tool: conical energies of [Chang-Tolsa '20]
- uses [Martikainen-Orponen '18] as a black-box
- key novelty: multiscale decomposition involving scales, locations, and directions:

- main tool: conical energies of [Chang-Tolsa '20]
- uses [Martikainen-Orponen '18] as a black-box
- key novelty: multiscale decomposition involving scales, locations, and directions:

- main tool: conical energies of [Chang-Tolsa '20]
- uses [Martikainen-Orponen '18] as a black-box
- key novelty: multiscale decomposition involving scales, locations, and directions:

- main tool: **conical energies** of [Chang-Tolsa '20]
- uses [Martikainen-Orponen '18] as a black-box
- key novelty: multiscale decomposition involving scales, locations, and directions:

- main tool: conical energies of [Chang-Tolsa '20]
- uses [Martikainen-Orponen '18] as a black-box
- key novelty: multiscale decomposition involving scales, locations, and directions:

- main tool: conical energies of [Chang-Tolsa '20]
- uses [Martikainen-Orponen '18] as a black-box
- key novelty: multiscale decomposition involving scales, locations, and directions:

- main tool: conical energies of [Chang-Tolsa '20]
- uses [Martikainen-Orponen '18] as a black-box
- key novelty: multiscale decomposition involving scales, locations, and directions:

- main tool: conical energies of [Chang-Tolsa '20]
- uses [Martikainen-Orponen '18] as a black-box
- key novelty: multiscale decomposition involving scales, locations, and directions:

- main tool: conical energies of [Chang-Tolsa '20]
- uses [Martikainen-Orponen '18] as a black-box
- key novelty: multiscale decomposition involving scales, locations, and directions:

Back to Vitushkin

Quantitative Vitushkin's conjecture If $E \subset \mathbb{R}^2$ is compact and $\mathsf{Fav}(E) \geq \kappa$ diam(*E*), do we have *γ*(*E*) ≳*^κ* diam(*E*)?

Partial results in Chang-Tolsa '20 and D.-Villa '22.

Quantitative Vitushkin's conjecture If $E \subset \mathbb{R}^2$ is compact and $\mathsf{Fav}(E) \geq \kappa$ diam(*E*), do we have *γ*(*E*) ≳*^κ* diam(*E*)?

Partial results in Chang-Tolsa '20 and D.-Villa '22.

Corollary (D. '24)

If $E\subset \mathbb{R}^2$ is Ahlfors regular and $\mathsf{Fav}(E)\geq \kappa$ diam(*E*), then

 $\gamma(E) \geq_{\kappa}$ diam(*E*).

Quantitative Vitushkin's conjecture If $E \subset \mathbb{R}^2$ is compact and $\mathsf{Fav}(E) \geq \kappa$ diam(*E*), do we have *γ*(*E*) ≳*^κ* diam(*E*)?

Partial results in Chang-Tolsa '20 and D.-Villa '22.

Corollary (D. '24)

If $E\subset \mathbb{R}^2$ is Ahlfors regular and $\mathsf{Fav}(E)\geq \kappa$ diam(*E*), then

 $\gamma(E) \geq_{\kappa}$ diam(*E*).

Proof: *γ*(*E*) *≥ γ*(*E ∩* Γ)

Quantitative Vitushkin's conjecture If $E \subset \mathbb{R}^2$ is compact and $\mathsf{Fav}(E) \geq \kappa$ diam(*E*), do we have *γ*(*E*) ≳*^κ* diam(*E*)?

Partial results in Chang-Tolsa '20 and D.-Villa '22.

Corollary (D. '24) If $E\subset \mathbb{R}^2$ is Ahlfors regular and $\mathsf{Fav}(E)\geq \kappa$ diam(*E*), then

 $\gamma(E) \geq_{\kappa}$ diam(*E*).

Proof: *γ*(*E*) *≥ γ*(*E ∩* Γ) ≳*^κ H*¹ (*E ∩* Γ)

Quantitative Vitushkin's conjecture If $E \subset \mathbb{R}^2$ is compact and $\mathsf{Fav}(E) \geq \kappa$ diam(*E*), do we have *γ*(*E*) ≳*^κ* diam(*E*)?

Partial results in Chang-Tolsa '20 and D.-Villa '22.

Corollary (D. '24) If $E\subset \mathbb{R}^2$ is Ahlfors regular and $\mathsf{Fav}(E)\geq \kappa$ diam(*E*), then

 $\gamma(E) \geq_{\kappa}$ diam(*E*).

 $\mathsf{Proof:} \ \gamma(E) \geq \gamma(E \cap \Gamma) \gtrsim_{\kappa} \mathcal{H}^1(E \cap \Gamma) \gtrsim_{\kappa} \mathsf{diam}(E).$ ■

We say that a set $E\subset\mathbb{R}^2$ has <mark>uniformly large Favard length</mark> if it is compact and for all *x ∈ E* and 0 *< r <* diam(*E*)

 $\textsf{Fav}(E \cap B(x,r)) \geq \kappa r$.

Sets with ULFL

We say that a set $E\subset\mathbb{R}^2$ has <mark>uniformly large Favard length</mark> if it is compact and for all *x ∈ E* and 0 *< r <* diam(*E*)

 $\textsf{Fav}(E \cap B(x,r)) \geq \kappa r$.

 \mathcal{A} , and \mathcal{A} , and \mathcal{A} , and \mathcal{A} , and \mathcal{A} *ε* 2 \mathcal{A} , and \mathcal{A} , and \mathcal{A} , and \mathcal{A} *ε* *Committee States Contract Contract Article* $\mathcal{L}(\mathbf{r})$, and $\mathcal{L}(\mathbf{r})$, and $\mathcal{L}(\mathbf{r})$

A set violating ULFL

We say that a set $E\subset\mathbb{R}^2$ has <mark>uniformly large Favard length</mark> if it is compact and for all *x ∈ E* and 0 *< r <* diam(*E*)

 $\textsf{Fav}(E \cap B(x,r)) \geq \kappa r$.

ε 2 *ε*

A set violating ULFL

We say that a set $E\subset\mathbb{R}^2$ has <mark>uniformly large Favard length</mark> if it is compact and for all *x ∈ E* and 0 *< r <* diam(*E*)

 $\textsf{Fav}(E \cap B(x,r)) \geq \kappa r$.

Corollary (D. '24 + D.-Villa '22)

```
If E ⊂ R
2 has ULFL, then
```
γ(*E*) ≳*^κ* diam(*E*)*.*

Proof: A stopping-time argument from [D.-Villa '22] gives a good approximation of "lower content regular sets" with Ahlfors regular sets, so we can use the estimates from [D. '24]. ■

We say that a set $E\subset\mathbb{R}^2$ has <mark>uniformly large Favard length</mark> if it is compact and for all *x ∈ E* and 0 *< r <* diam(*E*)

 $\text{Fav}(E \cap B(x, r)) \geq \kappa r$.

Corollary (D. '24 + D.-Villa '22)

```
If E ⊂ R
2 has ULFL, then
```
γ(*E*) ≳*^κ* diam(*E*)*.*

Proof: A stopping-time argument from [D.-Villa '22] gives a good approximation of "lower content regular sets" with Ahlfors regular sets, so we can use the estimates from [D. '24]. ■

Thank you!